Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 135-143    https://doi.org/10.11896/j.issn.1005-023X.2017.019.019
  吸附分离材料 |
生物炭及其复合材料吸附重金属离子的研究进展
王耀1, 梅向阳2, 段正洋1, 何昌华1, 徐晓军1, 解道雷1, 徐龙乾1, 黄启华1
1 昆明理工大学环境科学与工程学院,昆明 650500;
2 云南省环境工程评估中心,昆明 650100
Advances in Adsorption of Heavy Metals Ions by Biochar and Its Composites
WANG Yao1, MEI Xiangyang2, DUAN Zhengyang1, HE Changhua1, XU Xiaojun1, XIE Daolei1, XU Longqian1, HUANG Qihua1
1 Faculty of Environmental Science and Technology, Kunming University of Science and Technology, Kunming 650500;
2 Environmental Engineering Assessment Center in Yunnan Province, Kunming 650100
下载:  全 文 ( PDF ) ( 1707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物炭作为废弃生物质在缺氧条件下热解得到的固态产物,由于其表面具有丰富的官能团及较强的吸附性能等优点而被广泛应用到重金属废水处理。近年来,众多学者将生物炭与其他材料通过物理、化学方法结合,制备出对重金属离子具有优良吸附性能的生物炭复合材料。首先介绍了生物炭及其复合材料的制备方法和基本特性,其次考察了生物炭及其复合材料对重金属离子的吸附效果及影响因素,最后阐述了生物炭及其复合材料吸附重金属离子的机制,并对生物炭及其复合材料处理重金属离子的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王耀
梅向阳
段正洋
何昌华
徐晓军
解道雷
徐龙乾
黄启华
关键词:  生物炭  复合材料  重金属  影响因素  吸附机制    
Abstract: Biochar, a kind of solid matter, is generally obtained by the pyrolysis of waste biomass in the absence of oxygen. Biochar has been widely used in heavy metals treatment due to its variety of excellent properties, such as abundant functional groups and strong addsorption capacity. In recent years, many researchers attempt to prepare high-performance biochar composites in combination with other materials by physical and chemical process. In this paper, the synthetic strategies, material characteristics, adsorption capacity and effect factors of biochar and its composites are summarized and analyzed. In addition, the mechanism of heavy me-tals adsorption by biochar and its composites is elaborated. At last, the development prospects of biochar and its composites in the treatment of heavy metals is also prospected.
Key words:  biochar    composites    heavy metal    influencing factor    adsorption mechanism
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  X52  
  TB33  
作者简介:  王耀:男,1990年生,硕士研究生,研究方向为水污染控制 E-mail:1297821936@qq.com 徐晓军:通讯作者,男,1960年生,博士,教授,博士研究生导师,研究方向为水污染控制及恶臭气体处理等 E-mail:847614672@qq.com
引用本文:    
王耀, 梅向阳, 段正洋, 何昌华, 徐晓军, 解道雷, 徐龙乾, 黄启华. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 《材料导报》期刊社, 2017, 31(19): 135-143.
WANG Yao, MEI Xiangyang, DUAN Zhengyang, HE Changhua, XU Xiaojun, XIE Daolei, XU Longqian, HUANG Qihua. Advances in Adsorption of Heavy Metals Ions by Biochar and Its Composites. Materials Reports, 2017, 31(19): 135-143.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.019  或          http://www.mater-rep.com/CN/Y2017/V31/I19/135
1 Duan Z Y, Liu S L, Xu X J, et al. Preparation and functionalization of magnetic Fe3O4 nanoparticles and itsapplication in heavy metal wastewater [J]. Chem Ind Eng Prog,2017,36(5):1791(in Chinese).
段正洋, 刘树丽, 徐晓军,等. 磁性Fe3O4纳米粒子的制备、功能化及在重金属废水中的应用[J].化工进展,2017,36(5):1791.
2 Gong X J, Li W G, Zhang D Y, et al. Adsorption of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon in the presence of co-existing ions[J]. Int Biodeterioration Biodegradation,2015,102:256.
3 Yuan M, Tong S, Zhao S, et al. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon[J]. J Hazard Mater, 2010,181(1-3):1115.
4 Liu W J, Li W W, Jiang H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chem Rev,2017,117(9):6367.
5 Tan X F, Liu Y G, Gu Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technol,2016,212:318.
6 Duman G, Okutucu C, Ucar S, et al. The slow and fast pyrolysis of cherry seed[J]. Bioresource Technol,2011,102(2):1869.
7 Hupfauf B, Süβ M, Dumfort A, et al. Cultivation of microalgae in municipal wastewater and conversion by hydrothermal carbonization: A review[J]. Chembioeng Rev,2016,3(4):186.
8 Wu Y J, Li W, Wu Q, et al. Preparation, properties and applications of hydrochar[J]. Prog Chem,2016(1):121(in Chinese).
吴艳姣, 李伟, 吴琼,等. 水热炭的制备、性质及应用[J]. 化学进展,2016(1):121.
9 Lei H, Ren S, Wang L, et al. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production[J]. Bioresource Technol,2011,102(10):6208.
10 Foo K Y, Hameed B H. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: Influence of operational parameters[J]. Bioresource Technol,2012,103(1):398.
11 Kim K H, Kim J Y, Cho T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technol,2012,118(8):158.
12 Brown T R, Wright M M, Brown R C. Estimating profitability of two biochar production scenarios: Slow pyrolysis vs, fast pyrolysis[J]. Biofuels Bioproducts Biorefining,2011,5(1):54.
13 Zhang Z X, Wu J, Chen W F. Review on prepation and application of biochar[J]. Adv Mater Res,2014,898:456.
14 Duku M H, Gu S, Hagan E B. Biochar production potential in Ghana—A review[J]. Renewable Sustainable Energy Rev,2011,15(8):3539.
15 Uchimiya M. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups[J]. J Hazard Mater,2011,190(1-3):432.
16 Yuan S, Dai Z H, Zhou Z J, et al. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresource Technol,2012,109(2):188.
17 Peng F, Song H, Xiang J, et al. Evolution of char structure during steam gasification of the chars produced from rapid pyrolysis of rice husk[J]. Bioresource Technol,2012,114(3):691.
18 Ma X Y, Wang L L, Cui S P, et al. A recyclable method for preparation of hydrochars and silica from rice husk[J]. Mater Sci Forum,2014,787:164.
19 Schwaiger N, Feiner R, Zahel K, et al. Liquid and solid products from liquid-phase pyrolysis of softwood[J]. Bioenergy Res,2011,4(4):294.
20 Meyer S, Glaser B, Quicker P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review[J]. Environ Sci Technol,2011,45(22):9473.
21 Xie T, Reddy K R, Wang C, et al. Characteristics and applications of biochar for environmental remediation: A review[J]. Critical Rev Environ Sci Technol,2014,45(9):939.
22 Chen Y, Yang H, Wang X, et al. Biomass-based pyrolytic polyge-neration system on cotton stalk pyrolysis: Influence of temperature[J]. Bioresource Technol,2012,107(107):411.
23 Enders A, Hanley K, Whitman T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technol,2012,114(3):644.
24 Choppala G K, Bolan N S, Megharaj M, et al. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils[J]. Environ Quality,2012,41(4):1175.
25 Xu D, Zhao Y, Sun K, et al. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties[J]. Chemosphere,2014,111:320.
26 Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J]. Soil Use Management,2011,27(1):110.
27 Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Tech-nol,2013,131(3):374.
28 Huang H, Wang Y X, Tang J C, et al. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J]. Environ Sci,2014,35(5):1884(in Chinese).
黄华, 王雅雄, 唐景春,等. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学,2014,35(5):1884.
29 Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technol,2010,101:5222.
30 Fei L, Fang H, Wei C, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-so-lute systems[J]. Environ Pollution,2011,159(4):850.
31 Yuan J H, Xu R K, Zhang H, et al. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technol,2011,102(3):3488.
32 Angin D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technol,2012,128(1):593.
33 Kim W K, Shim T, Kim Y S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technol,2013,138(2):266.
34 Wang Z Y, Liu G C, Monica Xing, et al. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environ Sci,2014(12):4735(in Chinese).
王震宇, 刘国成, Monica Xing,等. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学,2014(12):4735.
35 Wu S X, Wang X, Chen C, et al. Characterization of biochar derived from water hyacinth, rice straw and sewage sludge and their environmental implications[J]. Acta Sci Circum,2015,35(12):4021(in Chinese).
吴诗雪, 王欣, 陈灿,等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析[J]. 环境科学学报,2015,35(12):4021.
36 Wang S Y, Tang Y K, Li K, et al.Combined performance of biochar sorption and magnetic separation processes for treatment of chro-mium-contained electroplating wastewater[J]. Bioresource Technol,2014,174:67.
37 Han Y, Cao X, Ouyang X, et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (Ⅵ) from aqueous solution: Effects of production conditions and particle size[J]. Chemosphere,2015,145:336.
38 Deng Guiyou. Research on removal effects and mechanisms of arsenic in water using magnetic carbonized rice husk[D]. Changsha: Central South University of Forestry and Technology,2015(in Chinese).
邓贵友. 磁性炭化谷壳对水体中砷的去除效果及机理研究[D].长沙:中南林业科技大学,2015.
39 Xiao Jing. Research on the preparation of lron-coated activated carbon adsorbent and adsorption mechanisms of arsenic[D]. Xiangtan: Xiangtan University,2013(in Chinese).
肖静. 载铁活性炭吸附剂的制备及除砷机理研究[D].湘潭: 湘潭大学,2013.
40 Liu T, Gao B, Fang J, et al. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(Ⅱ) and Cd(Ⅱ) removal[J]. RSC Adv,2016,6(29):24314.
41 Inyang M, Gao B, Zimmerman A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars[J]. Environ Sci Pollution Res,2015,22(3):1868.
42 Feng Y F, Xue L H, Yang B, et al. Adsorption of As(Ⅴ) from aqueous solution by lanthanum oxide-loaded biochar:Process and mechanisms[J]. Agro-Environ Sci,2015,34(11):2190(in Chinese).
冯彦房, 薛利红, 杨梖,等. 载镧生物质炭吸附水体中As(Ⅴ)的过程与机制[J]. 农业环境科学学报,2015, 34(11):2190.
43 Ying Y, Gao B, Chen J, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential[J]. Bioresource Technol,2013,138(6):8.
44 Zhang M, Liu Y, Li T, et al. Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(Ⅵ) from aqueous solution[J]. RSC Adv,2015,5(58):46955.
45 Yu Z H, Huang Y F, Lian F, et al. Adsorption of arsenic(Ⅲ) on biochar-manganese oxide composites[J]. Agro-Environment Sci,2015,34(1):155(in Chinese).
于志红, 黄一帆, 廉菲,等. 生物炭-锰氧化物复合材料吸附砷(Ⅲ)的性能研究[J]. 农业环境科学学报,2015,34(1):155.
46 Song Z, Fei L, Yu Z, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chem Eng J,2014,242:36.
47 Yang G X, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Res,2014,48(1):396.
48 Xue Y, Gao B, Yao Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chem Eng,2012,200-202(34):673.
49 Alslaibi T M, Abustan I, Ahmad M A, et al. Cadmium removal from aqueous solution using microwaved olive stone activated carbon[J]. Environ Chem Eng,2013,1(3):589.
50 Regmi P, Garcia Moscoso J L, Kumar S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J].Environ Management,2012,109(17):61.
51 Shim T, Yoo J, Ryu C, et al. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity[J]. Bioresource Technol,2015,197:85.
52 Wang H, Gao B, Wang S, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4, treated hickory wood[J]. Bioresource Technol,2015,197:356.
53 Ippolito J A, Strawn D G, Scheckel K G, et al. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar[J]. Environ Quality,2013,41(4):1150.
54 Qian L, Zhang W, Yan J, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technol,2016,206:217.
55 Zhang W, Mao S, Chen H, et al. Pb(Ⅱ) and Cr(Ⅵ) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technol,2013,147(9):545.
56 Mohan D, Kumar H, Sarswat A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars[J]. Chem Eng,2014,236(2):513.
57 Zhang C, Shan B, Tang W, et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Bioresource Technol,2017,238:352.
58 Ma J C, Dougherty D A. The cation-pi interaction[J].Chem Rev,1997,46:885.
59 Li L, Lu Y C, Liu Y, et al. Adsorption mechanisms of cadmium(Ⅱ) on biochars derived from corn straw[J]. J Agro-Environ Sci,2012(11):2277(in Chinese).
李力, 陆宇超, 刘娅,等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012(11):2277.
60 Kołodyńska D, Krukowska J, Thomas P. Comparison of sorption and desorption studies of heavy metal Ions from biochar and commercial active carbon[J]. Chem Eng,2016,307:353.
61 Wang S. Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites[J]. RSC Adv,2016,6(22):17792.
62 Cao X, Ma L, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and strazine[J]. Environ Sci Technol,2009,43(9):3285.
63 Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environ Sci Pollution Res Int,2013,20(1):358.
64 Lu H, Zhang W, Yang Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Res,2011,46(3):854.
65 Kong H, He J, Gao Y, et al. Cosorption of phenanthrene and mercury(Ⅱ) from aqueous solution by soybean stalk-based biochar[J].Agricultural Food Chem,2011,59(22):12116.
66 Inyang M, Gao B, Ying Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresource Technol,2012,110(2):50.
67 Chen T, Zhou Z, Xu S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technol,2015,190:388.
68 Xu X, Hu X, Ding Z, et al. Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb(Ⅱ) into value-added PbO na-noparticles[J]. Chem Eng J,2017,308:863.
69 Wang S Y, Tang Y K, Chen C, et al. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(Ⅱ) removal[J]. Bioresource Technol,2015,186:360.
70 Ma Y, Liu W J, Zhang N, et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J]. Bioresource Technol,2014,169(5):403.
71 Hsu N H, Wang S L, Lin Y C, et al. Reduction of Cr(Ⅵ) by crop-residue-derived black carbon[J]. Environ Sci Technol,2009,43(43):8801.
72 Dong X, Ma L Q, Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. J Ha-zard Mater,2011,190(1-3):909.
73 Dong X, Ma L Q, Zhu Y, et al. Mechanistic investigation of mercury sorption by brazilian pepper biochars of different pyrolytic tempe-ratures based on X-ray photoelectron spectroscopy and flow calorimetry[J]. Environ Sci Technol,2013,47(21):12156.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[10] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[11] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[12] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[13] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed