Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2089-2094    https://doi.org/10.11896/cldb.18040085
  高分子与聚合物基复合材料 |
苯多酸分子标志物法对NaClO氧化前后生物炭的性质描述
常兆峰1, 田路萍2, 梁妮1, 张朋超1, 周丹丹1, 张军1, 吴敏1
1 昆明理工大学环境科学与工程学院,昆明 650500
2 云南省环境科学研究院,昆明 650500
Characterization of Biochar Properties Before and After NaClO Oxidation byMolecular Markers of Benzene Polycarboxylic Acids
CHANG Zhaofeng1, TIAN Luping2, LIANG Ni1, ZHANG Pengchao1, ZHOU Dandan1, ZHANG Jun1, WU Min1
1 Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500
2 Yunnan Institute of Environmental Science, Kunming 650500
下载:  全 文 ( PDF ) ( 2415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以九种多环芳烃和四种纯化合物为例探究生物炭经HNO3氧化生成苯多酸(BPCAs)的过程,证明BPCAs方法可以对环境中炭黑或高缩合度有机质进行相对定量和定性的描述。并以纤维素(CE)和木质素(LG)为原料,在不同温度下(0~500 ℃)制备生物炭,结合常规理化性质表征比较分析生物炭经NaClO氧化前后BPCAs信息的相关变化。结果表明,BPCAs总含量与苯六甲酸(B6CA)相对含量均随生物炭制备温度升高而增加,说明生物炭的缩合度随温度升高而变大且相同温度下木质素生物炭的缩合度高于纤维素生物炭。NaClO氧化导致生物炭1.8%~79.3%的BPCAs损失但各单体BPCA的百分含量并没有明显变化,证明NaClO氧化不会改变生物炭BPCAs的分布特征。苯五甲酸/苯六甲酸(B5CA/B6CA)和苯六甲酸/苯四甲酸(B6CA/B4CAs)作为辨析环境炭黑来源的特征值,氧化前后均指示相同的生物炭来源,表明BPCAs方法识别环境中生物炭来源具有高可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常兆峰
田路萍
梁妮
张朋超
周丹丹
张军
吴敏
关键词:  苯多酸分子标志物  多环芳烃  化学计量学  生物炭  次氯酸钠氧化    
Abstract: Exemplified by nine polycyclic aromatic hydrocarbons (PAHs) and four pure compounds, the process of HNO3 oxidation of biochar to produce benzene polycarboxylic acids (BPCAs) molecular markers was investigated. It had been proved that BPCAs could be adopted to describe the carbon black or condensed organic matter in the environment quantitatively and qualitatively. Then, biochar was prepared from cellulose (CE) and lignin (LG) at different temperatures (0—500 ℃). The variations of BPCAs information before and after NaClO oxidation were analyzed and compared by conventional physicochemical characterization. The results indicated that the total content of BPCAs and the relative content of benzene hexacarboxylic acid (B6CA) increased with the increasing preparation temperature of biochars, which meant that the condensation degree of biochar increased with the increasing temperature and the condensation degree of lignin biochar was higher than that of cellulose biochar at the same temperature. NaClO oxidation resulted in a BPCAs mass loss of 1.8%—79.3% in biochar, while there was no obvious change of BPCA proportion in each individual monomer, indicting that NaClO oxidation would not alter the distribution pattern of BPCAs in biochar. Both the ratios of benzene pentacarboxylic acid / benzene hexacarboxylic acid (B5CA/B6CA) and benzene hexacarboxylic acid / benzene tetracarboxylic acid (B6CA/B4CAs) were employed to discriminate the source of environmental carbon black, and the denoted same biochars sources before and after NaClO oxidation confirmed that BPCAs method is highly reliable in identifying biochar sources in the environment.
Key words:  benzene polycarboxylic acid biomakers    polycyclic aromatic hydrocarbons (PAHs)    stoichiometry    biochar    sodium hypochlorite (NaClO) oxidation
                    发布日期:  2019-05-31
ZTFLH:  X13  
基金资助: 国家自然科学基金(41663013;41473116)
通讯作者:  minwup@hotmail.com   
作者简介:  常兆峰,昆明理工大学博士研究生,2014年毕业于石河子大学化学化工学院,同年9月进入昆明理工大学环境科学与工程学院攻读硕士学位,2015年9月转为硕博连读生。主要研究方向为生物炭的制备及应用,土壤碳循环。至今,在国内外学术期刊发表论文8篇,其中SCI论文4篇,参与国家自然科学基金项目5项。吴敏,昆明理工大学教授,博士生导师。2005年在北京大学获得硕士学位,2012年在昆明理工大学获得博士学位,2014年至2015年在美国麻省大学从事博士后研究工作。主讲的双语课程“环境毒理学”入选为云南省双语示范课程。在近期的工作中重点关注有机污染物环境行为机理研究。主持3项国家自然科学基金,参与多项国家级、省部级项目,已发表论文60余篇,其中31篇被SCI收录,译著1部。
引用本文:    
常兆峰, 田路萍, 梁妮, 张朋超, 周丹丹, 张军, 吴敏. 苯多酸分子标志物法对NaClO氧化前后生物炭的性质描述[J]. 材料导报, 2019, 33(12): 2089-2094.
CHANG Zhaofeng, TIAN Luping, LIANG Ni, ZHANG Pengchao, ZHOU Dandan, ZHANG Jun, WU Min1. Characterization of Biochar Properties Before and After NaClO Oxidation byMolecular Markers of Benzene Polycarboxylic Acids. Materials Reports, 2019, 33(12): 2089-2094.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040085  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2089
1 Masiello C A. Marine Chemistry, 2004, 92(1), 201.
2 Xiao X, Chen Z, Chen B. Scientific Reports, 2016, 6, 22644.
3 Peng H, Gao P, Chu G, et al. Environmental Pollution, 2017, 229, 846.
4 Wu L J, Wang C X, Zhang F, et al. China Environmental Science, 2016, 36(1), 74 (in Chinese).
武丽君, 王朝旭, 张峰, 等. 中国环境科学, 2016, 36(1), 74.
5 Wu Z J, Bi E P. Environmental Science, 2017, 38(5), 2154 (in Chinese).
吴志娟, 毕二平. 环境科学, 2017, 38(5), 2154.
6 Zhang S J, Huang G X, Xing B L, et al. Materials Review B:Research Papers, 2016, 30(1), 28 (in Chinese).
张双杰, 黄光许, 邢宝林, 等. 材料导报:研究篇, 2016, 30(1), 28.
7 Wang Y, Mei X Y, Duang Z Y, et al. Materials Review A:Review Papers, 2017, 31(10), 135 (in Chinese).
王耀, 梅向阳, 段正洋, 等. 材料导报:综述篇, 2017, 31(10), 135.
8 Huang H, Wang Y X, Tang J C, et al. Environmental Science, 2014, 35(5), 1884 (in Chinese).
黄华, 王雅雄, 唐景春, 等. 环境科学, 2014, 35(5), 1884.
9 Jian M F, Gao K F, Yu H P. Acta Scientiae Circumstantiae, 2016, 36(5), 1757 (in Chinese).
简敏菲, 高凯芳, 余厚平. 环境科学学报, 2016, 36(5), 1757.
10Ma F F, Zhao B W, Zhong J K, et al. China Environmental Science, 2015, 35(4), 1156 (in Chinese).
马锋锋, 赵保卫, 钟金魁, 等. 中国环境科学, 2015, 35(4), 1156.
11Li X, Shen Q, Zhang D, et al. Plos One, 2013, 8(6), e65949.
12Tian L P, Chang Z F, Wang P, et al. Environmental Chemistry, 2017, 36(4), 738 (in Chinese).
田路萍, 常兆峰, 王朋, 等. 环境化学, 2017, 36(4), 738.
13Wolf M, Lehndorff E, Wiesenberg G L B, et al. Organic Geochemistry, 2013, 55(1), 11.
14Schneider M P W, Hilf M, Vogt U F, et al. Organic Geochemistry, 2010, 41(10), 1082.
15Brodowski S, Rodionov A, Haumaier L, et al. Organic Geochemistry, 2005, 36(9), 1299.
16Lehndorff E, Roth P J, Cao Z H, et al. Global Change Biology, 2014, 20(6), 1968.
17Li F, Pan B, Zhang D, et al. Scientific Reports, 2015, 5,11074.
18Chang Z, Tian L, Li F, et al. Science of the Total Environment, 2018, 626, 660.
19Glaser B, Haumaier L, Guggenberger G, et al. Organic Geochemistry, 1998, 29(4), 811.
20Ziolkowski L A, Chamberlin A R, Greaves J, et al. Limnology & Oceanography Methods, 2011, 9(4), 140.
21Dittmar T. Organic Geochemistry, 2008, 39(4), 396.
22Kappenberg A, Bläsing M, Lehndorff E, et al. Organic Geochemistry, 2016, 94, 47.
23Enders A, Hanley K, Whitman T, et al. Bioresource Technology, 2012, 114(3), 644.
24Keiluweit M, Nico P S, Johnson M G, et al. Environmental Science & Technology, 2010, 44(4), 1247.
25Wiedemeier D B, Lang S Q, Gierga M, et al. Journal of Visualized Experiments Jove, 2016, 2016(111),53922.
26Ghaffar A, Ghosh S, Li F, et al. Environmental Pollution, 2015, 206, 502.
27Qian L, Chen M, Chen B. Journal of Soils & Sediments, 2015, 15(5), 1130.
28Abiven S, Hengartner P, Schneider M P W, et al. Soil Biology & Biochemistry, 2011, 43(7), 1615.
29Dittmar T, Koch B P. Marine Chemistry, 2006, 102(3), 208.
30Vasilyeva N A, Abiven S, Milanovskiy E Y, et al. Soil Biology & Biochemistry, 2011, 43(9), 1985.
31Schneider M P W, Lehmann J, Schmidt M W I. Soil Biology & Bioche-mistry, 2011, 43(9), 1992.
32Wiedemeier D B, Brodowski S, Wiesenberg G L B. Chemosphere, 2015, 119(119C), 432.
[1] 叶俊沛, 张盼月, 仙光, 张光明. 铁改性生物炭对啤酒废水厌氧消化产甲烷的促进作用研究[J]. 材料导报, 2018, 32(20): 3634-3637.
[2] 王耀, 梅向阳, 段正洋, 何昌华, 徐晓军, 解道雷, 徐龙乾, 黄启华. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 《材料导报》期刊社, 2017, 31(19): 135-143.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed