Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18069-18075    https://doi.org/10.11896/cldb.20060128
  无机非金属及其复合材料 |
氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究
储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇
河海大学力学与材料学院,南京 210098
Study on Improving Chloride Binding Capacity in Mortar Under Stray Current in Chloride-Sulfate Coexisting Environment
CHU Hongqiang, WANG Tingting, ZHANG Yuheng, DING Tianyun, LIANG Yunchao, ZHU Zhengyu
College of Mechanics and Materials, Hohai University, Nanjing 210098, China
下载:  全 文 ( PDF ) ( 11924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 长期浸泡在地下水中的地铁混凝土结构,不仅遭受氯盐、硫酸盐的双重侵蚀,而且存在杂散电流腐蚀破坏。由于孔溶液中的自由氯离子是导致钢筋锈蚀的首要因素,通过提高混凝土中氯离子的结合能力可有效降低氯离子对钢筋混凝土的危害。本工作通过选择合理的外掺料种类及掺量,提出了提高地铁工程混凝土中氯离子结合性能的最优外掺料组合,并采用电位滴定法测定结合氯离子含量,以及结合XRD、SEM和DTG等微观测试方法对其机理进行分析。结果表明:杂散电流作用下偏高岭土对氯离子结合性能的提升效果优于硅灰,粉煤灰微珠优于沸石粉,复掺10%偏高岭土、20%微珠、1.5% PVA可再分散性乳胶粉的试件中氯离子的结合性能最优,砂浆内部氯离子的化学结合能力明显提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
储洪强
王婷婷
张宇衡
丁天云
梁云超
朱正宇
关键词:  杂散电流  氯离子结合能力  矿物掺合料  聚合物    
Abstract: Metro concrete immersed in groundwater not only suffers from the dual corrosion of chloride and sulfate but also generally sustains stray current corrosion, leading to severe corrosion to the buried metal along the track and the reinforcement in the concrete structure. Existing research generally agrees that it is the free chloride ions remaining in the pore solution that causes the corrosion of the steel bar. When the chloride ions cannot be objectively prevented from invading the interior of the concrete structure, improving the binding capacity of the chloride ions can effectively reduce its harm to the reinforced concrete. In this work, the best combination scheme for enhancing the chloride binding capacity of the metro concrete is proposed by reasonably selecting mineral admixtures, types of polymers, and their corresponding amounts. The content of bound chloride ions was determined by potentiometric titration, and the optimized binding performance of the chloride ions in concrete was characterized utilizing XRD, SEM, and DTG. The results are indicated that metakaolin has the prior in the improvement of chloride ion binding capacity under stray current than silica fume, and fly ash micro-sphere outperforms zeolite powder. Also, the specimen mixed with 10% metakaolin, 20% fly ash micro-sphere, and 1.5% PVA re-dispersible emulsion powder has the best chloride binding capacity. The compounding of mineral admixtures and polymers significantly improves the binding capacity of chloride ions inside the specimen.
Key words:  stray current    chloride binding capacity    mineral admixture    polymer
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TB304  
基金资助: 江苏省重点研发计划(社会发展)项目(BE2020780);国家自然科学基金(51778209)
作者简介:  储洪强,河海大学教授,博士研究生导师。2001年本科毕业于河海大学,2012年博士毕业于同济大学,曾经在美国University of Colorado, Boulder访学1年。其主要从事高性能混凝土与混凝土耐久性、混凝土结构电化学修复技术和工程结构的检测与评估的研究工作。
引用本文:    
储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
CHU Hongqiang, WANG Tingting, ZHANG Yuheng, DING Tianyun, LIANG Yunchao, ZHU Zhengyu. Study on Improving Chloride Binding Capacity in Mortar Under Stray Current in Chloride-Sulfate Coexisting Environment. Materials Reports, 2021, 35(18): 18069-18075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060128  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18069
1 Huang W X. Research on the anti-corrosion durability of concrete structure of GZ metro under multiple environmental factors. Ph.D. Thesis, South China University of Technology, China, 2010 (in Chinese).
黄文新. 广州地铁混凝土结构在环境多因素作用下抗侵蚀耐久性的研究. 博士学位论文, 华南理工大学, 2010.
2 Chen Z, Koleva D, Breugel K V. Corrosion Reviews, 2017, 35(6), 397.
3 Nemecek J, Kruis J, Koudelka T. Applied Mathematics and Computation, 2018, 319, 575.
4 Yuan Q, Shi C, Schutter G D, et al. Construction and Building Mate-rials, 2009, 23(1), 1.
5 Nielsena E P, Herforta D, Geiker M R, et al. Cement and Concrete Research, 2005, 35(1), 117.
6 Xie Y J, Chen S P, Long G C. Journal of Railway Science and Enginee-ring, 2007, 4(2), 1(in Chinese).
谢友均, 陈书苹, 龙广成. 铁道科学与工程学报, 2007, 4(2), 1.
7 Mohammed T U, Hamada H. Cement and Concrete Research, 2003, 33(9), 1487.
8 Nielsen E P, Geiker M R. Cement and Concrete Research, 2003, 33(1), 133.
9 Li G, Zhang A, Song Z, et al. Construction and Buliding Materials, 2018, 158, 640.
10 Long Z Q, Wang Z L. Journal of Chongqing University of Technology(Natural Science), 2014, 28(8), 48(in Chinese).
龙志强, 王振林. 重庆理工大学学报(自然科学), 2014, 28(8), 48.
11 Zhu Y H, Geng J, Wang H, et al. The World of Building Materials, 2013,34(1), 41(in Chinese).
朱瑶宏, 耿健, 王浩, 等. 建材世界, 2013,34(1), 41.
12 Ma Y F, Li N, Chang J. Inorganic Chemicals Industry, 2009, 41(10), 8(in Chinese).
马艳芳, 李宁, 常钧. 无机盐工业, 2009, 41(10), 8.
13 Yuan Y F, Ma H Y, Yu H F, et al. Bulletin of the Chinese Ceramic So-ciety, 2014, 33(9), 2320(in Chinese).
袁银峰, 麻海燕, 余红发, 等. 硅酸盐通报, 2014, 33(9), 2320.
14 Tritthart J. Cement and Concrete Research, 1989, 19(5), 683.
15 Yu Q, Zeng J J, Fan Z H, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(12), 3134 (in Chinese).
余强, 曾俊杰, 范志宏, 等. 硅酸盐通报, 2014, 33(12), 3134.
16 Brown P W, Badger S. Cement and Concrete Research, 2000, 30(10), 1535.
17 Hou D S, Li T. Physical Chemistry Chemical Physics, 2018, 20(4), 2373.
18 Larsen C. Chloride binding in concrete, effect of surrounding environment and concrete composition. Ph. D. Thesis, Norwegian Science and Technology University, Norway, 1998.
19 Zeng J J, Wang S N, Fan Z H, et al. Journal of Wuhan University of Technology, 2015, 37(4), 22(in Chinese).
曾俊杰, 王胜年, 范志宏, 等. 武汉理工大学学报, 2015, 37(4), 22.
20 Wang Y H, Xu J. Coal Ash China, 2006(3), 36(in Chinese).
王云红, 徐杰. 粉煤灰, 2006, (3), 36.
21 Wang Y, Xu L L. Materials Review A: Review Papers, 2014, 24(12), 68(in Chinese).
汪洋, 徐玲玲. 材料导报:综述篇, 2014, 24(12), 68.
22 Ortega E A, Cheeseman C, Knight J, et al. Cement and Concrete Research, 2000, 30(10), 1641.
23 Irassar E F, Maio A D, Batic O R. Cement and Concrete Research, 1996(1), 113.
24 Huang Z Q, Zhao G D, Zhang W T, et al. Journal of Chongqing University of Technology(Natural Science), 2020, 34(3), 185(in Chinese).
黄志强, 赵国栋, 张文韬, 等. 重庆理工大学学报(自然科学), 2020, 34(3), 185.
25 Lu Y, Lu J T, He X F, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(7), 1335(in Chinese).
路阳, 卢军太, 何小芳, 等. 硅酸盐通报, 2013, 32(7), 1335.
26 Gou M F, Guan X M, Zhang H B. Materials Review B: Research Papers, 2011, 25(5), 125 (in Chinese).
勾密峰, 管学茂, 张海波. 材料导报:研究篇, 2011, 25(5), 125.
27 Yuan L W. Study on chloride penetration and frost resistance of concrete modified by nano-SiO2. Master's Thesis, University of Jinan, China, 2011 (in Chinese).
袁连旺. 纳米SiO2改性混凝土的抗氯离子渗透和抗冻性能研究. 硕士学位论文, 济南大学, 2017.
28 Zhao W, Li D X, Li Q H. Materials Review A: Review Papers, 2010, 24(6), 136(in Chinese).
赵维, 李东旭, 李清海. 材料导报:综述篇, 2010, 24(6), 136.
29 Ba H J, Feng Q, Yang Y Z. China Ceramic Science, 2002(6), 780(in Chinese).
巴恒静, 冯奇, 杨英姿. 硅酸盐学报, 2002(6), 780.
30 Yan N. The influence of chloride binding in cement paste with metakaolin as admixture. Master's Thesis, Chongqing University, China, 2011 (in Chinese).
晏宁. 偏高岭土对水泥石固结氯离子性能的影响. 硕士学位论文, 重庆大学, 2010.
[1] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[2] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[3] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[4] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[5] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[6] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[7] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[8] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[9] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[10] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[11] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[12] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[13] 孔志云, 樊龙伟, 杜亚杰, 牛昌昌, 狄然, 张环, 魏俊富. 金属表面离子印迹材料的研究进展[J]. 材料导报, 2021, 35(15): 15143-15152.
[14] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[15] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed