Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13177-13185    https://doi.org/10.11896/cldb.19120105
  高分子与聚合物基复合材料 |
3D打印聚合物纳米复合材料的研究进展
杨兆哲1, 孔振武1, 吴国民1, 王思群2, 谢延军3, 冯鑫浩2,4,*
1 中国林业科学研究院林产化学工业研究所,南京 210042
2 田纳西大学再生碳中心,诺克斯维尔 37996
3 东北林业大学材料科学与工程学院,哈尔滨 150040
4 南京林业大学家居与工业设计学院,南京 210037
Recent Advances in 3D Printed Polymer Nanocomposites
YANG Zhaozhe1, KONG Zhenwu1, WU Guomin1, WANG Siqun2, XIE Yanjun3, FENG Xinhao2,4,*
1 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
2 Center of Renewable Carbon, University of Tennessee, TN 37996, USA
3 College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
4 College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 9121KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相对于传统制造方法如挤出成型、模压成型等,3D打印技术不仅能够快速成型结构复杂且精细的产品,而且还可以根据不同功能、性能需求选择不同材料进行快速制造。凭借这一优势,3D打印越来越受到人们的重视,越来越多的3D打印产品被应用到人们的生活、学习和工作中。在众多3D打印材料中,聚合物材料(如热固性和热塑性聚合物等)的占比大、应用广,大到房屋内饰、小到微/纳米电子设备都可以通过3D打印聚合物材料来实现。然而,相比于传统方法制造的聚合物材料,3D打印聚合物材料强度低、打印层之间界面结合差,所以目前3D打印聚合物材料主要用于模型和非结构材料。为提高3D打印聚合物材料的强度,纳米材料(如纤维素纳米晶)常被用作增强体与聚合物材料混合打印,以此制备高强、多功能的3D打印纳米复合材料。纤维素纳米晶来源广泛、价格低廉、可再生、强度高,是一种十分理想的天然纳米增强材料。因此,近年来纤维素纳米晶在3D打印聚合物纳米复合材料中的应用受到广泛关注。除研究纳米材料对3D打印聚合物材料性能的影响外,研究者们还从纳米材料改性和新型纳米材料的研发等方面不断进行尝试,在提高3D打印聚合物纳米复合材料强度的同时赋予其更多的功能性,并取得了丰硕的成果。此外,借助光固化3D打印和聚合物熔融沉积成型两项基本原理相近、成型机理不同的3D打印技术,研究者们从打印纳米复合材料的结构、性能及功能出发,分别研究不同打印技术实现材料“结构-性能-功能”的可能性和可行性,为3D打印聚合物纳米复合材料的拓展应用提供了可靠依据。本文在简述3D打印技术的基础上,重点阐述常用于热固性和热塑性聚合物3D打印技术的基本原理和特点;着重分析两项不同3D打印技术在聚合物纳米复合材料领域的应用情况,总结3D打印聚合物纳米复合材料的性能特征和应用范围,以期为3D打印纳米复合材料的广泛应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨兆哲
孔振武
吴国民
王思群
谢延军
冯鑫浩
关键词:  3D打印  纳米复合材料  聚合物  光固化  熔融沉积    
Abstract: Compared to the traditional manufacturing methods such as extrusion, molding, etc., 3D printing technology can not only rapidly mold the product with complex and fine structure, but also realizes efficient manufacturing with different materials to meet the requirements on the functions and performance. Therefore, 3D printing has been attracted more attention, and more 3D printed products have been applied into people's lives, study, and work. Among all the raw materials used for 3D printing, polymer such as thermoset and thermoplastic polymer, has been mostly 3D printed and applied in the areas ranging from house decorations to micro/nano-electronic devices. However, the 3D printed polymers can only be used in mo-dels and non-structural materials due to their low strength and weak adhesion between printed layers. Nanomaterials such as cellulose nanocrystals, are often used as reinforcement in polymers to prepare high-strength 3D printed nanocomposites, which can be used in structural and functional applications. Cellulose nanocrystal is an ideal nano-enhancement material with wide sources, low price, renewable, and high strength. Hence, the application of nanomaterials in the 3D printed nanocomposites has been researched, meanwhile, the effect of nanomaterials on the properties of 3D-printed polymers was elaborately investigated. Researches were also focused on the modification of nanomaterial and development of new nanomaterials to improve the property of 3D printed nanocomposites and obtain functionality in the printed nanocomposites, and several fruitful results have been achieved. In addition, the structure-property-function relationship of 3D printed nanocomposites produced by stereolithography and fused deposition modeling, respectively, have been evaluated to provide a reliable reference for the extensive application of 3D printed nanocomposites. In this study, the 3D printing technology was briefly introduced. The basic principles and characteristics of 3D printing technology used in thermoset and thermoplastic polymers were introduced. Subsequently, the application of stereolithography and fused deposition modeling in the field of polymer nanocomposites were analyzed. Finally, the performance and applications of the printed nanocomposites were analyzed and summarized to establish a stable foundation for the wide application of 3D printed polymer nanocomposites.
Key words:  3D printing    nanocomposites    polymer    stereolithography    fused deposition modeling
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TQ327  
基金资助: 江苏省自然科学基金青年项目(BK20200779);江苏省高等学校自然科学研究项目(19KJB220004);宜华生活科技股份有限公司科技创新项目(YH-JS-JSKF-201904002)
作者简介:  杨兆哲,中国林业科学研究院林产化学工业研究所助理研究员。2018年毕业于东北林业大学,获得工学博士学位。2016—2017年在加拿大拉瓦尔大学Denis Rodrigue教授课题组博士联合培养。目前主要从事生物质/环氧树脂复合材料方面的研究。
冯鑫浩,南京林业大学家居与工业设计学院助理研究员。2018年毕业于东北林业大学,获得工学博士学位。2015—2017年在美国田纳西大学王思群教授课题组进行博士联合培养研究工作。主要从事木材功能性改良、3D打印纳米复合材料与木制品表面装饰等方面的研究工作。近年来,在木材改性和3D打印材料领域发表文章20余篇,包括Carbohydrate PolymersMaterials & DesignPolymersHolzforschungJournal of Polymer Science Part B: Polymer PhysicsPolymer Composites等。
引用本文:    
杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
YANG Zhaozhe, KONG Zhenwu, WU Guomin, WANG Siqun, XIE Yanjun, FENG Xinhao. Recent Advances in 3D Printed Polymer Nanocomposites. Materials Reports, 2021, 35(13): 13177-13185.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120105  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13177
1 Bourell D L. Annual Review of Materials Research,2016,46(1),1.
2 Lee K S, Kim R H, Yang D Y, et al. Progress in Polymer Science,2008,33(6),631.
3 Lu B H, Li D C. Machine Building & Automation,2013,42(4),1(in Chinese).
卢秉恒,李涤尘.机械制造与自动化,2013,42(4),1.
4 Ligon S C, Liska R, Stampfl J, et al. Chemical Reviews,2017,117(15),10212.
5 Bose S, Ke D, Sahasrabudhe H, et al. Progress in Materials Science,2018,93,45.
6 Kong Y L, Gupta M K, Johnson B N, et al. Nano Today,2016,11(3),330.
7 Li J, Xu M, Bao W H. Journal of Northeast Forestry University,2015(6),1(in Chinese).
李坚,许民,包文慧.东北林业大学学报,2015(6),1.
8 Farahani R D, Dubé M. Advanced Engineering Materials,2018,20(2),1700539.
9 Farahani R D, Dubé M, Therriault D. Advanced Materials,2016,28(28),5794.
10 Hull C W. U.S. patent,US4575330,1986.
11 Jacobs P F, Reid D T, Rapid prototyping & manufacturing—fundamentals of stereolithography, Society of Manufacturing Engineers, USA,1992.
12 Dippenaar D J, Schreve K. International Journal of Advanced Manufactu-ring Technology,2013,64(5-8),755.
13 Lipson H, Kurman M. Fabricated: the new world of 3D printing, Wiley, USA,2013.
14 American Society of Testing Materials International. Standard terminology for additive manufacturing technologies. USA,2012.
15 Hwang S. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling. Ph.D. Thesis, The University of Texas at El Paso, USA,2015.
16 Stansbury J W, Idacavage M J. Dental Materials,2016,32(1),54.
17 Gao W, Zhang Y, Ramanujan D, et al. Computer-aided Design,2015,69,65.
18 Wang X, Jiang M, Zhou Z, et al. Composites Part B Engineering,2017,110,442.
19 Torrado Perez A R. Defeating anisotropy in material extrusion 3D printing via materials development. Ph.D. Thesis, The University of Texas at El Paso, USA,2015.
20 Leigh S J, Bradley R J, Purssell C P, et al. Plos One,2012,7(11),e49365.
21 Farahani R D, Lebel L L, Therriault D. Journal of Micromechanics & Microengineering,2014,24(5),055020.
22 Invernizzi M, Natale G, Levi M, et al. Materials,2016,9(7),583.
23 Dellinger J G, Eurell J A, Stewart M, et al. Journal of Biomedical Materials Research Part A,2010,76A(2),366.
24 Beecroft M. In: IOP Conference Series-Materials Science and Enginee-ring. UK,2016,pp.012017.
25 Cesaretti G, Dini E, Kestelier X D, et al. Acta Astronautica,2014,93(1),430.
26 Shimoni A, Azoubel S, Magdassi S. Nanoscale,2014,6(19),11084.
27 Compton B G, Lewis J A. Advanced Materials,2014,26(34),5930.
28 Patra S, Young V. Cell Biochemistry & Biophysics,2016,74(2),93.
29 Guo S Z, Yang X, Heuzey M C, et al. Nanoscale,2015,7(15),6451.
30 Guo S Z, Qiu K, Meng F, et al. Advanced Materials,2017,29(27),1701218.
31 Kodama H. Review of Scientific Instruments,1981,52(11),1770.
32 Herbert A J. Journal of Applied Photographic Engineering,1982,8,185.
33 Feng X, Yang Z, Chmely S, et al. Carbohydrate Polymers,2017,169,272.
34 Kawata S, Sun H B, Tanaka T, et al. Nature,2001,412(6848),697.
35 Wohlers T T, Caffrey T, Wohlerss I. Additive manufacturing and 3D printing state of the industry: annual worldwide progress report, Wohlers Associates, USA,2013.
36 Tan Y W, Wang Y X, Cheng Y L. Die & Mould Industry,2013(4),69(in Chinese).
谈耀文,王永信,程永利.模具工业,2013(4),69.
37 Li D F, Chen J M, Yuan Y P, et al. Journal of Beijing University of Technology,2015,41(12),1769(in Chinese).
李东方,陈继民,袁艳萍,等.北京工业大学学报,2015,41(12),1769.
38 Melchels F P W, Feijen J, Grijpma D W. Biomaterials,2010,31(24),6121.
39 D’Urso P S, Earwaker W J, Barker T M, et al. British Journal of Plastic Surgery,2000,53(3),200.
40 Popov V K, Evseev A V, Ivanov A L, et al. Journal of Materials Science Materials in Medicine,2004,15(2),123.
41 Langer R, Vacanti J P. Science,2000,260(5110),920.
42 Dhariwala B, Hunt E, Boland T. Tissue Engineering,2004,10(9-10),1316.
43 Parandoush P, Lin D. Composite Structures,2017,182,36.
44 Crivello J V, Reichmanis E. Chemistry of Materials,2014,26(1),533.
45 Chopra K, Mummery P M, Derby B, et al. Biofabrication,2012,4(4),045002.
46 Manapat J Z, Mangadlao J D, Tiu B D, et al. ACS Applied Materials & Interfaces,2017,9(11),10085.
47 Chua C K, Leong K F, Lim C S. Rapid prototyping, principles and applications. World Scientific, Singapore,2003.
48 Wang Y, Ye C S, Huang S H. China Plastics Industry,2005,33(11),4(in Chinese).
汪洋,叶春生,黄树槐.塑料工业,2005,33(11),4.
49 Liu Y Z J, Xia C L, Zhang J, et al. Engineering Plastics Application,2017,45(3),130(in Chinese).
刘洋子健,夏春蕾,张均,等.工程塑料应用,2017,45(3),130.
50 Tang T M, Zhang Z, Deng J W, et al. New Chemical Materials,2015(6),228(in Chinese).
唐通鸣,张政,邓佳文,等.化工新型材料,2015(6),228.
51 Turner B N, Strong R, Gold S A. Rapid Prototyping Journal,2014,20(3),192.
52 Wong K V, Hernandez A. ISRN Mechanical Engineering,2012,2012(2),30.
53 Ottway J R. Deviation comparisons of 3D printed features produced from material extrusion machines. Ph.D. Thesis, Indiana State University, USA,2015.
54 Jakus A E. Development and implementation of functional 3D-printed material systems for tissue engineering, energy, and structural applications. Ph.D. Thesis, Northwestern University, USA,2014.
55 Duan Y, Yuan Z, Tang Y, et al. Rapid Prototyping Journal,2011,17(4),247.
56 Feng X, Yang Z, Rostom S S H, et al. Journal of Applied Polymer Science,2017,134(31),45082.
57 Panwar A, Tan L P. Molecules,2016,21(6),685.
58 Nathan-Walleser T, Lazar I M, Fabritius M, et al. Advanced Functional Materials,2014,24(29),4706.
59 Kickelbick G. Progress in Polymer Science,2003,28(1),83.
60 Manias E. Nature Materials,2007,6(1),9.
61 Rahman A, Ali I, Zahrani S M A, et al. Nano,2011,6(3),185.
62 Gao Y M, Wang P, Wang S M, et al. Materials Science and Technology,2008,16(4),551(in Chinese).
高延敏,汪萍,王绍明,等.材料科学与工艺,2008,16(4),551.
63 Peponi L, Puglia D, Torre L, et al. Materials Science & Engineering R,2014,85,1.
64 Fortunati E, Luzi F, Puglia D, et al. Carbohydrate Polymers,2013,97(2),837.
65 Marchessault R H, Morehead F F, Walter N M. Nature,1959,184(4686),632.
66 Dufresne A. Journal of Science & Technology for Forest Products and Processes,2012,2(6),6.
67 Habibi Y, Lucia L A, Rojas O J. Chemical Reviews,2010,110(6),3479.
68 Oksman K, Aitomki Y, Mathew A P, et al. Composites Part A Applied Science & Manufacturing,2016,83,2.
69 Habibi Y. Chemical Society Reviews,2014,43(5),1519.
70 Braun B, Dorgan J R. Biomacromolecules,2009,10(2),334.
71 Saini S, Belgacem M N, Bras J. Materials Science & Engineering C,2017,75,760.
72 Roy D, Semsarilar M, Guthrie J T, et al. Chemical Society Reviews,2009,38(7),2046.
73 Wu L Y, Luo L, Wen X M. Thermosetting Resin,2008,23(s1),22(in Chinese).
吴良义,罗兰,温晓蒙.热固性树脂,2008,23(s1),22.
74 Kargarzadeh H, Mariano M, Huang J, et al. Polymer,2017,132,368.
75 Li X, Gao H, Scrivens W A, et al. Nanotechnology,2004,15(11),1416.
76 Santos M N D, Opelt C V, Lafratta F H, et al. Materials Science & Engineering A,2011,528(13-14),4318.
77 Marcovich N E, Auad M L, Bellesi N E, et al. Journal of Materials Research,2006,21(4),870.
78 Xu S, Girouard N, Schueneman G, et al. Polymer,2013,54(24),6589.
79 Bae J H, Kim S H. Polymer International,2015,64(6),821.
80 Secor E B, Ahn B Y, Gao T Z, et al. Advanced Materials,2015,27(42),6683.
81 Kokkinis D, Schaffner M, Studart A R. Nature Communications,2015,6,8643.
82 Farahani R D, Dalir H, Aissa B, et al. Composites Part A Applied Science & Manufacturing,2011,42(12),1910.
83 Adams J J, Duoss E B, Malkowski T F, et al. Advanced Materials,2011,23(11),1335.
84 Chung H, Das S. Materials Science & Engineering A,2008,487(1),251.
85 Gou M, Qu X, Zhu W, et al. Nature Communications,2014,5(3774),1.
86 Leigh S J, Purssell C P, Bowen J, et al. Sensors & Actuators A Physical,2011,168(1),66.
87 Compton B G, Hmeidat N S, Pack R C, et al. JOM,2018,70(3),292.
88 Chuang K C, Grady J E, Draper R D, et al. In: Proceedings of the Composites and Advanced Materials Exposition. USA,2015,pp.1.
89 Shofner M L, Lozano K, Rodríguez-Macías F J, et al. Journal of Applied Polymer Science,2003,89(11),3081.
90 Prashantha K, Roger F. Journal of Macromolecular Science: Part A-Chemistry,2017,54(1),24.
91 Chen Q, Mangadlao J D, Wallat J, et al. ACS Applied Materials & Interfaces,2017,9(4),4015.
92 Weng Z, Wang J, Senthil T, et al. Materials & Design,2016,102,276.
93 Dul S, Fambri L, Pegoretti A. Composites Part A,2016,85,181.
[1] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[2] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[3] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[4] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[5] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[6] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[7] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[8] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[9] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[10] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[11] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[12] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[13] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[14] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[15] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed