Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5147-5157    https://doi.org/10.11896/cldb.20020012
  高分子与聚合物基复合材料 |
4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用
冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建
临沂大学材料科学与工程学院,临沂 276000
Printing Method, Driving Mechanism, Deformation Mode and Application of 4D Printing Shape Memory Polymers
FENG Ru, XU Yahui, HAN Hui, HUANG Wenjun, WANG Yanbin, LI Xingjian
School of Materials Science and Engineering, Linyi University, Linyi 276000, China
下载:  全 文 ( PDF ) ( 5964KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆高分子(Shape memory polymer, SMP)是指能够感知外界环境变化的刺激并响应这种变化,对其状态参数进行调整,从而回复到预先设定状态的一类高分子材料。相对于形状记忆合金和形状记忆陶瓷,SMP具有可回复形变量大、响应温度便于调节、刺激响应方式丰富、材料属性多样化、形状记忆效应种类多等优点,在医疗器械、柔性电子、纺织品、信息载体、航空航天以及软体机器人等领域展示了巨大的应用潜力。
但SMP的原始形状或回复后的永久形状都较为单一,而且成型过程高度依赖模具并受脱模工艺的巨大限制,其形状难以制作得非常复杂,难以进一步满足新兴高科技领域对智能结构复杂性的需求。针对上述难题,国内外学者在该领域已进行了一些创新性的研究,当前的研究热点主要集中在以下两个方面:(1)在热固性高分子材料中引入动态共价键,通过交联网络结构重排实现固态塑性,进而对形状记忆材料的几何结构进行复杂化,这类形状记忆高分子材料也称为热适性形状记忆高分子;(2)利用3D打印(Three-dimensional printing)技术打印智能材料,实现材料几何结构的复杂化,并产生了一类新的打印技术,称为4D打印(Four-dimensional printing)。其中,SMP材料是当前4D打印使用最多的智能材料。
近年来,研究者以SMP材料为研究对象,结合最新的4D打印技术,采用熔融沉积成型、立体光刻成型、墨水直写和聚合物喷射技术制备了3D形状复杂的具有各种刺激响应方式和形状记忆效应的形状记忆材料。基于驱动原理不同,热、光、电、磁和水刺激响应形状记忆4D打印结构已经被成功设计和制备,丰富了具有复杂几何形状记忆材料的刺激响应类型;在变形模式上,实现了具有双形形状记忆效应、双向形状记忆效应、多重形状记忆效应和顺序梯度响应的4D打印形状记忆材料的设计、制备和应用。
本文综述了4D打印SMP的打印方法、驱动原理、变形模式和应用,最后概述了4D打印SMP材料存在的问题及展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯茹
许雅惠
韩慧
黄文峻
王延斌
李兴建
关键词:  形状记忆聚合物  4D打印  刺激响应方式  变形模式    
Abstract: Shape memory polymer (SMP) refers to a class of stimuli-responsive polymer materials that can sense the change of the external environment and respond to this change, and adjust its state parameters to return to the preprogrammed state. Compared with shape memory alloys and shape memory ceramics, SMPs have been demonstrated great potential application in the fields of medical devices, flexible electronics, textiles, information carriers, aerospace and soft robotics etc., due to large recoverable strain, tunable response temperature, diverse stimulus methods, multiple material attribute, and versatile shape memory effects.
However, the original shape of the SMPs or the permanent shape after the recovery is relatively simple, and the molding process is highly dependent on the mold and is greatly limited by the demolding process. Thus, its shape is difficult to be complicated, which is difficult to further meet the demand for the complexity of intelligent structures in emerging high-tech fields. Aiming at above problems, domestic and foreign researchers have carried out some innovative research in this field. The current research hotspots mainly focus on the following two aspects: (1) The dynamic covalent bonds are embedded into thermosetting polymers and then solid-state plasticity is fulfilled by the rearrangement of the cross-linked network, leading to geometrically complex permanent shapes. This type of the shape memory polymer is also called thermadapt SMP; (2) The complexity of material geometry can be achieved by 3D printing (Three-dimensional printing) technology to print intelligent materials, and the new type of printing technology is termed as Four-dimensional (4D) printing. At present, the most widely used smart materials is the SMP for 4D prin-ting.
In recent years, combined with the latest 4D printing technology, the geometrically complex shape memory materials with diverse stimulus responses and shape memory effects are prepared by researchers using the SMP as research objects and using fused deposition modeling, stereolithography, direct ink writing and PolyJet as the 3D printing methods. Based on different driving mechanisms, thermal-responsive, photo-responsive, electrical-responsive, magnetic-responsive, and water-responsive 4D printing SMPs have been successfully designed and prepared, enriching the types of stimulus response with complex geometric shape memory materials; in terms of the deformation mode, the design, preparation and application of 4D printed shape memory materials with double-shape shape memory effect, two-way shape memory effect, multiple shape memory effect and sequentially gradient 4D printing SMPs are realized.
This paper mainly reviews the printing method, driving mechanism, deformation mode and application of 4D printing SMP. Finally, the problems of 4D printing SMP are summarized in current research and the development direction is prospected in the future.
Key words:  shape memory polymer    4D printing    stimulus response mode    deformation mode
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  O631.2  
基金资助: 山东省自然科学基金项目(ZR2020QE092);临沂大学博士科研启动项目(40619024);国家级大学生创新创业训练计划项目(201910452004)
通讯作者:  lixingjian1314@163.com   
作者简介:  冯茹,于2017—2020年在临沂大学材料科学与工程学院攻读工学学士学位。在李兴建老师的指导下进行国家级大学生创新创业项目和毕业设计。目前主要研究领域是形状记忆高分子材料。已发表相关SCI论文一篇,专利一项。
李兴建,临沂大学,讲师。2016年博士毕业于中国科学院成都有机化学研究所,同年进入浙江大学从事博士后研究工作。于2018年任教于临沂大学材料科学与工程学院。以第一作者和通讯作者在国内外学术期刊发表论文40余篇。主要从事形状记忆高分子材料的研究。
引用本文:    
冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
FENG Ru, XU Yahui, HAN Hui, HUANG Wenjun, WANG Yanbin, LI Xingjian. Printing Method, Driving Mechanism, Deformation Mode and Application of 4D Printing Shape Memory Polymers. Materials Reports, 2021, 35(5): 5147-5157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020012  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5147
1 Roy D, Cambre J N, Sumerlin B S. Progress in Polymer Science,2010,35(1-2),278.
2 Stuart M A C, Huck W T S, Genzer J, et al. Nature Materials,2010,9(2),101.
3 Lendlein A, Kelch S. Angewandte Chemie International Edition,2002,41(12),2034.
4 Zhao Q, Qi H J, Xie T. Progress in Polymer Science,2015,49-50,79.
5 Leng J, Lan X, Liu Y, et al. Progress in Materials Science,2011,56(7),1077.
6 Xie T. Polymer,2011,52(22),4985.
7 Hu J, Zhu Y, Huang H, et al. Progress in Polymer Science,2012,37(12),1720.
8 Li X, Pan Y, Lai J, et al. Polymer Chemistry,2017,8(26),3867.
9 Liu G, Ding X, Cao Y, et al. Macromolecular Rapid Communications,2005,26(8),649.
10 Li X, Feng R, Xu Y, et al. Polymer Chemistry,2020,11(4),909.
11 Zheng N, Xie T. Acta Polymerica Sinica,2017(11),1715.
郑宁,谢涛.高分子学报,2017(11),1715.
12 Zhao Q, Zou W, Luo Y, et al. Science Advances,2016,2(1),e1501297.
13 Zheng N, Fang Z, Zou W, et al. Angewandte Chemie International Edition,2016,55(38),11421.
14 Jin B, Song H, Jiang R, et al. Science Advances,2018,4(1),eaao3865.
15 Lu W, Le X, Zhang J, et al. Chemical Society Reviews,2017,46(5),1284.
16 Xie T. Nature,2010,464(7286),267.
17 Li J, Liu T, Xia S, et al. Journal of Materials Chemistry,2011,21(33),12213.
18 Xie T, Page K A, Eastman S A. Advanced Functional Materials,2011,21(11),2057.
19 Hu J, Zhu S, Young R J, et al. Journal of Materials Chemistry A,2017,5(2),503.
20 Zhu S, Hu J. Materials Chemistry Frontiers,2019,3(11),2463.
21 Wu J, Huang L, Zhao Q, et al. Chinese Journal of Polymer Science,2018,36,563.
22 Wei H Q, Wan X, Liu Y J, et al. Scientia Sinica Technologica,2018,48(1),2(in Chinese).
魏洪秋,万雪,刘彦菊,等.中国科学:技术科学,2018,48(1),2.
23 Li C Y, Zhang F H, Wang Y L, et al. Scientia Sinica Technologica,2019,49(1),13(in Chinese).
李春妍,张风华,王亚立,等.中国科学:技术科学,2019,49(1),13.
24 Kuang X, Roach D J, Wu J, et al. Advanced Functional Materials,2019,29(2),1805290.
25 Tibbits S. 3D Printing and Additive Manufacturing,2016,3,135.
26 Tibbits S. Architectural Design,2014,84(1),116.
27 Jiang Z, Xiao Y, Kang Y, et al. ACS Applied Materials & Interfaces,2017,9(24),20276.
28 Mendez J, Annamalai P K, Eichhorn S J, et al. Macromolecules,2011,44(17),6827.
29 Kumpfer J R, Rowan S J. Journal of the American Chemical Society,2011,133(32),12866.
30 Senatov F S, Niaza K V, Zadorozhnyy Y M, et al. Journal of the Mecha-nical Behavior of Biomedical Materials,2016,57,139.
31 Yu R, Yang X, Zhang Y, et al. ACS Applied Materials & Interfaces,2017,9(2),1820.
32 Huang M, Jiang R, Wu J, et al. Advanced Materials,2017,29(7),1605390.
33 Zarek M, Mansour N, Shapira S, et al. Macromolecular Rapid Communications,2017,38(2),1600628.
34 Wu Y P, Lin Y H, Zhou Y, et al. Progress in Chemistry,2012,24(10),2004(in Chinese).
武元鹏,林元华,周莹,等.化学进展,2012,24(10),2004.
35 Yang H, Leow W R, Wang T, et al. Advanced Materials,2017,29(33),1701627.
36 Cui H, Miao S, Esworthy T, et al. Nano Research,2019,12(6),1381.
37 Zhang Y, Yin X, Zheng M, et al. Journal of Materials Chemistry A,2019,7(12),6972.
38 Liu Y, Shaw B, Dickey M D, et al. Science Advances,2017,3(3),e1602417.
39 Wei H, Cauchy X, Navas I O, et al. ACS Applied Materials & Interfaces,2019,11(27),24523.
40 Rodriguez J N, Zhu C, Duoss E B, et al. Scientific Reports,2016,6,27933.
41 Wan X, Zhang F, Liu Y, et al. Carbon,2019,155,77.
42 Mu Q, Wang L, Dunn C K, et al. Additive Manufacturing,2017,18,74.
43 Rosales C A G, Duarte M F G, Kim H, et al. Materials Research Express,2018,5(6),065704.
44 Zarek M, Layani M, Cooperstein I, et al. Advanced Materials,2016,28(22),4449.
45 Roach D J, Kuang X, Yuan C, et al. Smart Materials and Structures,2018,27,125011.
46 Wei H, Zhang Q, Yao Y, et al. ACS Applied Materials & Interfaces,2017,9(1),876.
47 Zhang F, Wang L, Zheng Z, et al. Composites Part A: Applied Science and Manufacturing,2019,125,105571.
48 Lin C, Lv J, Li Y, et al. Advanced Functional Materials,2019,29(51),1906569.
49 Melocchi A, Inverardi N, Uboldi M, et al. International Journal of Pharmaceutics,2019,559,299.
50 Xu X, Zhao J, Wang M, et al. Scientific Reports,2019,9,12487.
51 Pei Z, Yang Y, Chen Q, et al. Nature Materials,2014,13(1),36.
52 Song H, Fang Z, Jin B, et al. ACS Macro Letters,2019,8(6),682.
53 Ambulo C P, Burroughs J J, Boothby J M, et al. ACS Applied Materials & Interfaces,2017,9(42),37332.
54 Kotikian A, Truby R L, Boley J W, et al. Advanced Materials,2018,30(10),1706164.
55 López-Valdeolivas M, Liu D, Broer D J, et al. Macromolecular Rapid Communications,2018,39(5),1700710.
56 Saed M O, Ambulo C P, Kim H, et al. Advanced Functional Materials,2019,29(3),1806412.
57 Yuan C, Roach D J, Dunn C K, et al. Soft Matter,2017,13(33),5558.
58 Shiblee M D N I, Ahmed K, Kawakami M, et al. Advanced Materials Technologies,2019,4(8),1900071.
59 Mao Y, Ding Z, Yuan C, et al. Scientific Reports,2016,6,24761.
60 Ge Q, Sakhaei A H, Lee H, et al. Scientific Reports,2016,6,31110.
61 Wu J, Yuan C, Ding Z, et al. Scientific Reports,2016,6,24224.
62 Peng B, Yang Y, Gu K, et al. ACS Materials Letters,2019,1,410.
63 Chen S, Zhang Q, Fen J. Journal of Materials Chemistry C,2017,5(33),8361.
64 Liu Z, Meyers M A, Zhang Z, et al. Progress in Materials Science,2017,88,467.
65 Mao Y, Yu K, Isakov M S, et al. Scientific Reports,2015,5,13616.
66 Kuang X, Wu J, Chen K, et al. Science Advances,2019,5(5),eaav5790.
67 Behl M, Kratz K, Zotzmann J, et al. Advanced Materials,2013,25(32),4466.
68 Behl M, Kratz K, Noechel U, et al. Proceedings of the National Academy of Sciences,2013,110(31),12555.
69 Wang J, Wang Z, Song Z, et al. Advanced Materials Technologies,2019,4(9),1900293.
70 Zou W, Dong J, Luo Y, et al. Advanced Materials,2017,29(14),1606100.
[1] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[2] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed