Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1212-1223    https://doi.org/10.11896/cldb.20030128
  高分子与聚合物基复合材料 |
4D打印技术:工艺、材料及应用
张雨萌1, 李洁1, 夏进军1, 张育新1,2
1 重庆大学艺术学院,重庆 401331
2 重庆大学材料科学与工程学院,重庆 400044
4D Printing: Technologies, Materials and Applications
ZHANG Yumeng1, LI Jie1, XIA Jinjun1, ZHANG Yuxin1,2
1 School of Art, Chongqing University, Chongqing 401331, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 5519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自1980年以来,3D打印就掀起了一片研究热潮,其凭借高使用效率、出色的表面分辨率和一步生产方面的高效率优势,被广泛应用于生物医学、电子学、自愈技术、工程应用以及仿生学领域。但3D打印技术存在难以打印复杂的结构及抑制应变控制的尺寸变化和各向异性行为的技术难题。为了克服其打印尺寸复杂性和不灵活性,人们引入了4D打印的概念。4D打印是基于智能材料、3D打印机和设计的跨学科研究,与3D打印产出的静态结构相比,4D打印产出的是一个动态结构。4D打印允许3D打印的结构响应外部刺激(例如温度、光线、水等),并随时间改变其形状或功能,从而使打印的产品不再局限于固定的形态,而是呈现多样化。
   自2013年首次概念化以来,4D打印就引起了研究者极大的兴趣。第四维度赋予了设计生命力,它使用刺激来驱动智能材料形状记忆效应的转变。智能材料是对环境敏感的材料,包括聚合物、合金、水凝胶、陶瓷和复合材料等,它们在热预应变、水吸收、电磁辐射活化、磁场、电流和电压、溶剂和pH值等外部环境刺激下,随时间发生自我变形、自我组装、自我分解、自我修复并更改属性或功能,呈现出变化多样的形态特征。4D打印通过模仿自然过程(花朵盛开、植物的变化和向日葵运动等)、探究材料的近似特征,在药物输送、可穿戴电子设备、时装、自动折纸结构、传感器和其他工程应用中被广泛尝试,并取得了惊人的成果。
   本文聚焦于4D打印中使用的材料系统和4D打印的具体应用,简要概述了4D打印的历史、定义、原理和基本要素之后,详细介绍了4D打印材料的系统分类,阐述了4D打印技术在生物仿生、生物医疗、折纸结构等相关应用领域的发展与挑战。最后,介绍了4D打印的趋势以及新领域的发展前景,为进一步的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雨萌
李洁
夏进军
张育新
关键词:  4D打印  智能材料  生物仿生  生物医疗  折纸结构    
Abstract: Since the 1980s, the idea of 3D printing has set off a research upsurge. Due to its advantages of material efficiency, excellent surface resolution and high efficiency in one-step production, 3D printing has been widely used in biomedical, electronics, self-healing technology, engineering applications and bionics fields. However, 3D printing technology also has some shortages, it cannot control the addition technology to produce complex structure or suppress the size change and anisotropy behavior of strain control. In order to overcome the complexity and inflexibility of printing size, people introduced the concept of 4D printing. 4D printing is an interdisciplinary research based on intelligent materials, 3D printers and design. Compared with the static structure produced by 3D printing, 4D printing contains a dynamic structure which means 4D allows 3D printed structures to respond to external stimuli (such as temperature, light, water, etc.) and change their shape or function over time, so that the printed product is no longer limited to a fixed shape, but presents a variety of changes.
4D printing attracts a lot of interest since it was first conceptualized in 2013. The fourth dimension gives vitality to design, which uses stimuli to drive the transformation of smart materials by shape memory effects. Intelligent materials are sensitive to the environment which including polymers, alloys, hydrogel, ceramics, composite materials and so on. Through the environment stimuli like thermal pre-strain, water absorption, electromagnetic radiation, activation, magnetic field, current, voltage, the solvent and pH, smart materials will self-assembly produce a deformation, decomposition, repair even change the properties or functions, showing a variety of morphological characteristics. 4D printing has been widely tried in drug delivery, wearable electronics, fashion, automatic origami structures, sensors and other engineering applications by mimicking natural processes (flowers bloom, plant changes and sunflower movements) and exploring similar characteristics of materials.
This review focuses on the system and specific application of 4D printing materials and list a brief overview of the 4D printing about its history, definition, principle and basic composition. We look back the latest development of 4D printing materials and state both the development and challenges of related application fields like the biological bionic, biological, medical, the progress of the application of paper folding structure, etc. Finally, we introduce the trend of 4D printing and the development prospect of the new field to provide reference for further research.
Key words:  4D printing    smart material    biomimetic    biomedical    origami structure.
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TS938.3  
  S219.05  
基金资助: 国家自然科学基金(21576034)
作者简介:  张雨萌,2019年6月毕业于哈尔滨理工大学,获得工学学士学位。现为重庆大学艺术学院硕士研究生,在张育新教授指导下进行研究。目前主要研究领域为艺术设计与材料的交叉融合。
夏进军,重庆大学艺术学院副教授、硕士研究生导师。2010—2011年美国辛辛那提大学DAAP学院访问学者。先后担任重庆工业设计协会理事、重庆市科技青年联合会理事、重庆市学校艺术教育协会常务理事。主要从事工业设计的理论研究与实践工作。近年来,在EI、CSSCI、CSCD等期刊发表与设计相关的论文20余篇,获得国家专利10余项。
张育新,重庆大学教授,本科和硕士毕业于天津大学,2008年博士毕业于新加坡国立大学,师从曾华淳教授(全球Top100化学家)。 主要从事多维度和多组分的可控自组装纳米技术、以超级电容器/清洁能源/环保等应用,尤其是在MnO2和硅藻土的纳米结构材料,获2016年度Journal of Materials Chemistry A优秀审稿人称号,获2016 年重庆市科技创新领军人才。 发表高水平研究论文250余篇,其中SCI论文240余篇,ESI高被引论文18篇。论文成果集中发表在Nature Chemistry, Advanced Materials等材料和物理化学领域权威期刊。
引用本文:    
张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
ZHANG Yumeng, LI Jie, XIA Jinjun, ZHANG Yuxin. 4D Printing: Technologies, Materials and Applications. Materials Reports, 2021, 35(1): 1212-1223.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030128  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1212
1 Tibbits S. The emergence of“4D printing”, TED Conference, America,2013.
2 Wu J J, Huang L M, Zhao Q, et al. Chinese Journal of Polymer Science,2018,36(5),563.
3 Ge Q, Qi H J, Dunn M L. Applied Physics Letters,2013,103(13),131901.1.
4 Gladman A S, Matsumoto E A, Nuzzo R G, et al. Nature Materials,2016,15(4),413.
5 Yang H, Leow W R, Wang T, et al. Advanced Materials,2017,29(33),1701627.1.
6 Nadgorny M, Xiao Z, Chen C, et al. ACS Applied Materials & Interfaces,2016,8(42),28946.
7 Kuang X, Roach D J, Wu J, et al. Advanced Functional Materials,2019,29(2),eaav5790.1.
8 Invernizzi M, Turri S, Levi M, et al. European Polymer Journal,2018,101,169.
9 Khare V, Sonkaria S, Lee G Y, et al. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(3),291.
10 Lopez-Valdeolivas M, Liu D, Broer D J, et al. Macromolecular Rapid Communications,2018,39(5),1700710.1.
11 Baker A B, Bates S R G, Llewellyn-Jones T M, et al. Materials & Design,2019,163,107544.1.
12 Schaffner M, Faber J A, Pianegonda L, et al. Nature Communications,2018,9,878.1.
13 de Marco C, Pane S, Nelson B J. Science Robotics,2018,3(18),UNSP eaau0449.1.
14 Villar G, Graham A D, Bayley H. Science,2013,340(6128),48.
15 Rastogi P, Kandasubramanian B. Chemical Engineering Journal,2019,366,264.
16 Ly S T, Kim J Y. International Journal of Precision Engineering And Manufacturing-Green Technology,2017,4(3),267.
17 Liu Y, Zhang W, Zhang F, et al. Composites Part B-Engineering,2018,153,233.
18 Ning F, Cong W, Qiu J, et al. Composites Part B,2015,80,369.
19 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B-Enginee-ring,2018,143,172.
20 Klippstein H, Sanchez A D D C, Hassanin H, et al. Advanced Enginee-ring Materials,2018,20(2),1700552.1.
21 Qiao H Y, Zhang Y, Huang Z G, et al. Nano Energy,2018,50,126.
22 Khatri B, Lappe K, Habedank M, et al. Polymers,2018,10(6),18.
23 Gioumouxouzis C I, Chatzitaki A T, Karavasili C, et al. Aaps Pharmscitech,2018,19(8),3362.
24 Fanous M, Gold S, Muller S, et al. International Journal of Pharmaceutics,2020,578,10.1016/j.ijpharm.2020.119124.
25 Wu L, Dong Z, Du H, et al. Research (Washington, D.C.),2018,2018,4795604.
26 Kuang X, Wu J, Chen K, et al. Science Advances,2019,5(5),eaav5790.1.
27 Huang S H, Liu P, Mokasdar A, et al. The International Journal of Advanced Manufacturing Technology,2013,67(5-8),1191.
28 Randazzo M, Pisapia J M, Singh N, et al. Surgical neurology internatio-nal,2016,7(Suppl 33),S801.
29 Olakanmi E O, Cochrane R F, Dalgarno K W. Progress In Materials Science,2015,74,401.
30 Herman A, Mowitz M, Aerts O, et al. Contact Dermatitis,2019,81(5),354.
31 Fogliatto A A B, Ahrens C H, Wendhausen P A P, et al. Rapid Prototyping Journal,2020,26(1),73.
32 Pereira J C, Gil E, Solaberrieta L, et al. Materials Science and Enginee-ring A-Structural Materials Properties Microstructure and Processing,2020,778,14.
33 Nommeots-Nomm A, Lee P D, Jones J R. Journal of the European Cera-mic Society,2018,38(3),837.
34 Mueller J, Raney J R, Shea K, et al. Advanced Materials,2018,30(12),8.
35 Mu Q, Dunn C K, Wang L, et al. Smart Materials And Structures,2017,26(4),045008.1.
36 Jakus A E, Secor E B, Rutz A L, et al. ACS Nano,2015,9(4),4636.
37 Cazon A, Morer P, Matey L. Proceedings of the Institution of Mechanical Engineers Part B-Journal Of Engineering Manufacture,2014,228(12),1664.
38 Goh G L, Agarwala S, Goh G D, et al. International Journal of Advanced Manufacturing Technology,2018,94(1-4),1309.
39 Gaynor A T, Meisel N A, Williams C B, et al. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2014,136(6),10.
40 Patel D K, Sakhaei A H, Layani M, et al. Advanced Materials,2017,29(15),1606000.1.
41 Sossou G, Demoly F, Belkebir H, et al. Materials & Design,2019,181,11.
42 Xie J H, Zhang W G, Liang D K. Materials Reports A: Review Papers,2006,20(6),6(in Chinese).
谢建宏,张为公,梁大开.材料导报:综述篇,2006,20(6),6.
43 Zhou J, Sheiko S S. Journal Of Polymer Science Part B-Polymer Physics,2016,54(14),1365.
44 Akbari S, Sakhaei A H, Kowsari K, et al. Smart Materials and Structures,2018,27(6),065027.1.
45 Zhang Y F, Zhang N, Hingorani H, et al. Advanced Functional Mate-rials,2019,29(15),1806698.1.
46 Ge Q, Sakhaei A H, Lee H, et al. Scientific Reports,2016,6,31110.1.
47 Ding Z, Yuan C, Peng X, et al. Science Advances,2017,3(4),e1602890.1.
48 Nguyen T D, Qi H J, Castro F, et al. Journal of the Mechanics and Phy-sics of Solids,2008,56(9),2792.
49 Gilormini P, Diani J. Comptes Rendus Mecanique,2012,340(4-5),338.
50 Wang F F, Yuan C, Wang D, et al. Smart Materials and Structures,2020,29(5),14.
51 Khoo Z X, Teoh J E M, Liu Y, et al. Virtual and Physical Prototyping,2015,10(3),103.
52 Chavez F A, Siqueiros J G, Carrete I A, et al. Virtual and Physical Prototyping,2019,14(2),188.
53 Jayalakshmi C G, Inamdar A, Anand A, et al. Journal of Applied Polymer Science,2019,136(14),47241.1.
54 Yang Y, Song X, Li X, et al. Advanced Materials,2018,30(36),1706539.1.
55 Andreas L, Marc B, Bernhard H, et al. Expert Review of Medical Devices,2010,7(3),357.
56 Jani J M, Leary M, Subic A, et al. Materials and Design,2014,56,1078.
57 Scalet G. Actuators,2020,9(1),33.
58 Wang X, Guo X, Ye J, et al. Advanced Materials,2019,31(2),1805615.1.
59 Khoo Z X, Liu Y, An J, et al. Materials,2018,11(4),519.1.
60 Lu H Z, Yang C, Luo X, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2019,763,9.
61 Saedi S, Moghaddam N S, Amerinatanzi A, et al. Acta Materialia,2018,144,552.
62 Wang X, Speirs M, Kustov S, et al. Scripta Materialia,2018,146,246.
63 Moghaddam N S, Saedi S, Amerinatanzi A, et al. Scientific Reports,2019,9,41.1.
64 Caputo M P, Berkowitz A E, Armstrong A, et al. Additive Manufactu-ring,2018,21,579.
65 Chen X L, Liu X H, Ouyang M Z, et al. Scientific Reports,2019,9,1.
66 Lowenberg C, Balk M, Wischke C, et al. Accounts of Chemical Research,2017,50(4),723.
67 Breger J C, Yoon C, Xiao R, et al. ACS Applied Materials & Interfaces,2015,7(5),3398.
68 Guo J, Zhang R, Zhang L, et al. ACS Macro Letters,2018,7(4),442.
69 Jia H Y, Huang Z J, Fei Z F, et al. Journal of Materials Chemistry B,2017,5(41),8193.
70 Schild H G. Progress In Polymer Science,1992,17(2),163.
71 Shiblee M N I, Ahmed K, Kawakami M, et al. Advanced Materials Technologies,2019,4(8),10.
72 Taylor D L, Panhuis M I H. Advanced Materials,2016,28(41),9060.
73 Spaldin N A, Ramesh R. Nature Materials,2019,18(3),203.
74 W E, D M N, F S J. Nature,2006,442(7104),759.
75 Ramesh R, Spaldin N A. Nature Materials,2007,6(1),21.
76 Zhang J, Ke X, Gou G, et al. Nature Communications,2013,4(1),2768.1.
77 Zaeem M A, Zhang N, Mamivand M. Computational Materials Science,2019,160,120.
78 Bargardi F L, Le Ferrand H, Libanori R, et al. Nature Communications,2016,7,13912.1.
79 Pretsch T. Polymers,2010,2(3),120.
80 Kang M, Pyo Y, Jang J Y, et al. Sensors and Actuators a-Physical,2018,283,187.
81 Shen Z C, Xia Y, Ding Y G, et al. Joural of Materials Engineering,2019,47(11),11(in Chinese).
沈自才,夏彦,丁义刚,等.材料工程,2019,47(11),11.
82 Tang Z, Gao Z, Jia S, et al. Advanced Science,2017,4(5),1600437.1.
83 Su J W, Tao X, Deng H, et al. Soft Matter,2018,14(5),765.
84 Zhao T, Yu R, Li X, et al. European Polymer Journal,2018,101,120.
85 Zolfagharian A, Kaynak A, Khoo S Y, et al. Sensors and Actuators a-Physical,2018,274,231.
86 Momeni F, Hassani N, Liu X, et al. Materials & Design,2017,122,42.
87 Xu H, Liu L, Teng F, et al. Research (Washington, D.C.),2019,2019,3495841.
88 Wehner M, Truby R L, Fitzgerald D J, et al. Nature,2016,536(7617),451.
89 Cangialosi A, Yoon C, Liu J, et al. Science,2017,357(6356),1126.
90 Pikul J H, Li S, Bai H, et al. Science,2017,358(6360),210.
91 Jeon S J, Hauser A W, Hayward R C. Accounts of Chemical Research,2017,50(2),161.
92 Kim J, Hanna J A, Byun M, et al. Science,2012,335(6073),1201.
93 White T J, Broer D J. Nature Materials,2015,14(11),1087.
94 O'Bryan C S, Bhattacharjee T, Hart S, et al. Science Advances,2017,3(5),e1602800.1.
95 Park S J, Gazzola M, Park K S, et al. Science,2016,353(6295),158.
96 Nojoomi A, Arslan H, Lee K, et al. Nature Communications,2018,9,11.
97 Saed M O, Ambulo C P, Kim H, et al. Advanced Functional Materials,2019,29(3),1806412.1.
98 Lin C, Lyu J, Li Y, et al. Advanced Functional Materials,2019,29(51),1906569.1.
99 Melocchi A, Inverardi N, Uboldi M, et al. International Journal of Pharmaceutics,2019,559,299.
100 Stevens M M, George J H. Science,2005,310(5751),1135.
101 Min L, Pan H, Chen S, et al. Composites Communications,2019,11,12.
102 Wang C, Xia K, Zhang M, et al. ACS Applied Materials & Interfaces,2017,9(45),39484.
103 Han D, Morde R S, Mariani S, et al. Advanced Functional Materials,2020,10.1002/adfm.201909197.
104 Bielecka Z F, Maliszewska-Olejniczak K, Safir I J, et al. Biological Reviews,2017,92(3),1505.
105 Costa E C, Moreira A F, de Melo-Diogo D, et al. Biotechnology Advances,2016,34(8),1427.
106 Mishriki S, Abdel Fattah A R, Kammann T, et al. Research (Washington, D.C.),2019,2019,9854593.
107 Rogers J, Huang Y, Schmidt O G, et al. Mrs Bulletin,2016,41(2),123.
108 Chen Z, Huang G, Trase I, et al. Physical Review Applied,2016,5(1),17001.1.
109 Dudte L H, Vouga E, Tachi T, et al. Nature Materials,2016,15(5),583.
110 Fernandes R, Gracias D H. Advanced Drug Delivery Reviews,2012,64(14),1579.
111 Zhao Z, Wu J, Mu X, et al. Science Advances,2017,3(4),e1602326.1.
112 Wang J Y, Wan J W, Wang D. Accounts of Chemical Research,2019,52(8),2169.
113 Yan S Z. Art Science and Technology,2019,32(12),24(in Chinese).
闫胜昝.艺术科技,2019,32(12),24.
114 Magisetty R, Kumar P, Gore P M, et al. Materials Chemistry and Phy-sics,2019,223,343.
115 Faber J A, Arrieta A F, Studart A R. Science,2018,359(6382),1386.
[1] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[2] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[3] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[4] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed