Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3336-3346    https://doi.org/10.11896/cldb.18070135
  高分子与聚合物基复合材料 |
生物质基温敏智能材料的研究进展
刘德乡, 刘武, 叶志会, 吴志平
中南林业科技大学材料科学与工程学院,长沙 410004
A Survey on the Study of Biomass-based Thermosensitive Smart Materials
LIU Dexiang, LIU Wu, YE Zhihui, WU Zhiping
School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004
下载:  全 文 ( PDF ) ( 2639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 温敏材料是重要的智能材料之一。虽然温敏均聚物具有良好的环境敏感性能,但其力学性能无法满足使用要求,且部分温敏均聚物的最低临界溶解温度(Lower critical solution temperature, LCST)难以改变,从而限制了其应用领域。当温敏聚合物与其他基材复合或接枝共聚时,可以有效提升温敏材料的力学性能,同时通过改变物料组成及配比可以调节温敏材料的临界温度,拓展其应用范围。
制备温敏智能材料的原料大多来源于不可再生的石油资源,随着石油资源日渐匮乏,人们逐渐将目光转移到其他资源。生物质作为可再生资源,广泛存在于自然界中,具有资源丰富、可持续利用的优点,特别是其含有羟基、胺基、醚键和羧基等活性官能团,可以提供多种活性位点,与温敏单体接枝共聚来制备温敏材料,是一种很好的温敏材料基材。已成功应用在生物质温敏智能材料中的生物质原料包括纤维素、纤维素醚、半纤维素、木质素、壳聚糖等。然而,制备生物质基温敏智能材料的接枝共聚方法单一,传统的自由基共聚制备的温敏材料存在温度响应范围窄、产生温敏均聚物较多且难分离以及制备的材料形态单一等问题。生物质温敏材料的接枝共聚方法已经从最初的以引发剂引发的普通自由基聚合发展到可控性较强的光引发自由基聚合、原子转移自由基聚合(Atom transfer radical polymerization, ATRP)、单电子转移活性自由基聚合(Single election transfer living radical polymerization, SET-LRP)、可逆加成-断裂链转移法(Reversible addition-fragmentation chain transfer, RAFT)等接枝共聚方法。温敏接枝单体较多,其中研究最多的为N-异丙基丙烯酰胺(N-isopropylacrylamide, NIPAM),其具有明确的临界溶解温度,且最低临界溶解温度与人体温度相差不大,它与生物质材料一起制备的温敏性膜、温敏性水凝胶和温敏性微球等在药物释放、组织工程和工农业等方面具有广泛的应用。
本文详细归纳了生物质大分子制备温敏材料的方法,对这些接枝共聚方法的特点进行总结,同时介绍了制备温敏材料涉及的温敏物质、温度响应机理以及生物质基温敏智能材料的应用,最后总结了现阶段生物质基温敏智能材料制备及应用中存在的难点,并对未来的技术发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘德乡
刘武
叶志会
吴志平
关键词:  生物质  温敏性  智能材料  自由基聚合    
Abstract: Thermosensitive materials are recognized as one of the most significant smart materials at present. Thermosensitive homopolymers show superior environmental sensitivity, nevertheless they suffer from poor mechanical properties, which cannot meet the applied requirements. Furthermore, it is difficult to alter the lower critical solution temperature (LCST) of some thermosensitive polymers, which blocks their widespread application. The combination or graft copolymerization of the thermosensitive materials with other substrates will greatly contribute to the properties of thermosensitive polymer. Meanwhile, the critical temperature of some thermosensitive materials can be adjusted by changing the material composition or ratio, thus their application field can be expanded.
The majority of the raw materials for preparing the thermosensitive materials are derived from non-renewable petroleum resources. The growing deficits of petroleum resources has given impetus to seek other alternative resources. Biomass, as a renewable resource, is widely distributed in nature, showing the advantages of abundant reserves and sustainable utilization. Especially, their active functional groups, including hydroxyl, amine, ether and carboxyl groups, can provide a variety of active sites, which is an ideal substrate for preparing thermosensitive materials by graft copolymerization with thermosensitive monomers. Biomass materials that have been successfully applied in biomass thermo-sensitive smart materials include cellulose, cellulose ether, hemicellulose, lignin, chitosan, etc. However, the graft copolymerization method for preparing biomass-based temperature-sensitive smart materials is short of diversity. The temperature-sensitive materials prepared by conventional free radical copolymerization bear the narrow temperature response range, large generation of homopolymers difficult to separate, and single morphology of mate-rial. The approach of graft copolymerization of biomass thermosensitive materials has developed from common free radical polymerization by initiators to highly controllable free radical polymerization for photoinitiated free radical polymerization, atom transfer radical polymerization(ATRP), single electron transfer mediated living radical polymerization (SET-LRP), reversible addition-fragmentation chain transfer (RAFT). A variety of thermosensitive monomers can be selected, among them, N-isopropylacrylamide (NIPAM) received most research attentions. It possesses a clear critical solution temperature, a close LCST with human body temperature. The thermosensitive membranes, thermo-sensitive hydrogels and thermo-sensitive microspheres prepared by NIPAM together with biomaterials exhibit extensive application in drug release, tissue engineering, industrial and agricultural, etc.
In this article, we present a detailed overview of the approaches for preparing temperature sensitive materials by biomass macromolecules, summarize the character of the grafting copolymerization, and introduce the temperature-sensitive substances involved in the preparation of thermo-sensitive materials, mechanism of temperature response and the application of biomass thermosensitive materials. Finally, we point out the difficulties existing in the preparation and application of biomass thermosensitive smart materials, and the future development of technology.
Key words:  biomass    thermosensitive properties    smart materials    free radical polymerization
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TQ311  
基金资助: 国家重点研发计划项目(2017YFD0601004);中南林业科技大学林业工程学科开放基金
作者简介:  刘德乡,2017年6月毕业于齐鲁工业大学,获得工学学士学位。现为中南林业科技大学材料科学与工程学院硕士研究生,在吴志平教授的指导下进行研究。目前主要研究领域为木质素基温敏材料。吴志平,中南林业科技大学材料科学与工程学院教授、硕士研究生导师。1993年6月本科毕业于中南林学院林产化工专业,2006年12月在中南大学应用化学专业取得博士学位,主要从事生物质材料和精细化学品的研究工作。近年来,以第一作者和通讯作者发表论文30余篇,包括 Journal of Applied Polymer ScienceJournal of Vinyl & Additive TechnologyJournal of NanomaterialsBiomaterials、《中国塑料》等。授权国家发明专利5项。wuzhiping02@163.com
引用本文:    
刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
LIU Dexiang, LIU Wu, YE Zhihui, WU Zhiping. A Survey on the Study of Biomass-based Thermosensitive Smart Materials. Materials Reports, 2019, 33(19): 3336-3346.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070135  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3336
1 Schmidt S, Zeiser M, Hellweg T, et al. Advanced Functional Materials,2010,20(19),3235.2 Hu Y Q, Quan Z M, Liu H N, et al. Materials Review A: Review Papers,2016,30(6),126(in Chinese).胡耀强,权朝明,刘海宁,等.材料导报:综述篇,2016,30(6),126.3 Kondo A, Fukuda H. Journal of Fermentation & Bioengineering,1997,84(4),337.4 Motealleh A, Kehr N S. Advanced Healthcare Materials,2017,6(1),1600938.5 Salis A, Rassu G, Budai-Szücs M, et al. Expert Opinion on Drug Delivery,2015,12(10),1583.6 Zhou H Y, Jiang L J, Cao P P, et al. Carbohydrate Polymers,2015,117,524.7 Wu H P, Chen F S, Zhao G D. Science & Technology in Chemical Industry,2015,23(2),63(in Chinese).吴海鹏,陈夫山,赵国东.化工科技,2015,23(2),63.8 Kai D, Tan M J, Chee P L, et al. Green Chemistry,2016,18(5),1175.9 Pu G Q, Liu Z, Wang Y L. Journal of Chongqing University of Technology (Natural Science),2017,31(10),57.蒲刚清,刘贞,汪毅霖.重庆理工大学学报(自然科学),2017,31(10),57.10 Yang W S, Jian S J, Lin W S. Journal of Chongqing University of Technology (Natural Science),2017,31(9),109.杨为森,简绍菊,林维晟.重庆理工大学学报(自然科学),2017,31(9),109.11 Figueiredo P, Lintinen K, Hirvonen J T, et al. Progress in Materials Science,2018,93,233.12 Gao Z H, Di M W. Biomass materials and applications, Chemical Industry Press, China,2008(in Chinese).高振华,邸明伟.生物质材料及应用,化学工业出版社,2008.13 Zhang Q. Smart materials based on thermoresponsive polymers.Ph.D. Thesis, Ghent University, Belgium,2014.14 Lai H J. Properties and structures of LCST type polymers in water environment. Ph.D. Thesis, Fudan University, China,2013(in Chinese).来恒杰.LCST型聚合物在水环境中的性质与结构.博士学位论文,复旦大学,2013.15 Hu H, Fan X D. Journal of Functional Polymers,2000(4),461(in Chinese).胡晖,范晓东.功能高分子学报,2000(4),461.16 Cai S, Xu W P, Liu Z J, et al. Acta Polymerica Sinica,2010,1(10),1204(in Chinese).蔡松,徐文萍,刘增金,等.高分子学报,2010,1(10),1204.17 Shi M. Synthesis and study properties of borate quaternary ammonium salt UCST thermosensitive polymer, Master’s Thesis, Shaanxi Normal University, China,2016(in Chinese).石梅.硼酸酯季铵盐型UCST温敏聚合物合成与性能研究.硕士学位论文,陕西师范大学,2016.18 Hu D, Fu X D. Chinese Journal of New Drugs,2012(20),2398(in Chinese).胡戴,符旭东.中国新药杂志,2012(20),2398.19 Bilal M, Asgher M, Shahid M, et al. Macromolecules,2016,86,728.20 Karavasili C, Fatouros D G. Drug Discovery Today,2016,21(1),157.21 Arca H C, Mosqueragiraldo L I, Bi V, et al. Biomacromolecules,2018,19(7),2351.22 Ravi K U. ResearchGate,2017,2(2),0002.23 Gorgieva S, Kokol V. Carbohydrate Polymers,2011,85(3),664.24 Pelton R. Journal of Colloid and Interface Science,2010,348(2),673.25 Zhang F. Preparation and characterization of magnetic thermosensitive polymer nanocapsules. Ph.D. Thesis, Fudan University, China,2009(in Chinese).张峰.磁性温敏聚合物纳米微囊的制备与表征.博士学位论文,复旦大学,2009.26 Kennedy J F, Pons R J S. Carbohydrate Polymers,1995,26(4),313.27 Roy D, Semsarilar M, Guthrie J T, et al. Chemical Society Reviews,2009,38(7),2046.28 Chen W, Yu H, Lee S Y, et al. Chemical Society Reviews,2018,47(8),2837.29 Gupta K C, Khandekar K. Biomacromolecules,2003,4(3),758.30 Sui X, Yuan J, Zhou M, et al. Biomacromolecules,2008,9(10),2615.31 Zhang X W. Preparation of pH and temperature sensitive microfiltration membranes by surface ATRP method. Master’s Thesis, Beijing University of Chemical Technology, China,2009(in Chinese).张晓玮.表面ATRP法制备pH、温度敏感微滤膜的研究.硕士学位论文,北京化工大学,2009.32 Zhang J, Wu Q, Li M C, et al. ACS Sustainable Chemistry & Enginee-ring,2017,5(8),7439.33 Ifuku S, Kadla J F. Biomacromolecules,2008,9(11),3308.34 Hufendiek A, Trouillet V, Meier M A, et al. Biomacromolecules,2014,15(7),2563.35 Khine Y Y, Ganda S, Stenzel M H. ACS Macro Letters,2018,7(4),412.36 Harsh D C, Gehrke S H. Journal of Controlled Release,1991,17(2),175.37 Bai Y Y. Synthesis of an intelligent microgel based on hydroxypropyl cellulose and its controlled release of oral insulin. Master’s Thesis, Northeast Normal University, China,2012(in Chinese).白云艳.基于羟丙基纤维素的智能性微凝胶的合成及其口服胰岛素的控制释放.硕士学位论文,东北师范大学,2012.38 Tang X, Gao L, Fan X, et al. Journal of Polymer Science Part A Polymer Chemistry,2010,45(9),1653.39 Xie G M, Song X Q, Ma Z B, et al. Chemical Research and Application,2007,19(6),629(in Chinese).解光明,宋晓青,马宗斌,等.化学研究与应用,2007,19(6),629.40 Wan S, Jiang M, Zhang G. Macromolecules,2007,40(15),5552.41 Cha R, He Z, Ni Y. Carbohydrate Polymers,2012,88(2),713.42 Song X Q. Preparation and self-assembly behavior of hydroxyethyl cellulose based thermosensitive polymers. Master’s Thesis, Jiangnan University, China,2006(in Chinese).宋晓青.基于羟乙基纤维素的温敏聚合物的制备及其水相自组装行为研究.硕士学位论文,江南大学,2006.43 Hu J, Li H Y, Williams G R, et al. Journal of Pharmaceutical Sciences,2016,105(3),1104.44 Liu L Y, Song J, Cheng B W, et al. Materials Review A: Review Papers,2018,32(2),405(in Chinese).刘兰燕,宋俊,程博闻,等.材料导报:综述篇,2018,32(2),405.45 Kim Y S, Kadla J F. Biomacromolecules,2010,11(4),981.46 Gao G, Dallmeyer J I, Kadla J F. Biomacromolecules,2012,13(11),3602.47 Gao G, Karaaslan M A, Kadla J F, et al. Green Chemistry,2014,16(8),3890.48 Diao B, Zhang Z, Zhu J, et al. RSC Advances,2014,4(81),42996.49 Feng Q, Chen F, Wu H. Bioresources,2011,6(4),4942.50 Jin C, Song W, Liu T, et al. ACS Sustainable Chemistry & Engineering,2017,6(2),1763.51 Voepel J, Edlund U, Albertsson A C. Journal of Polymer Science Part A: Polymer Chemistry,2011,49(11),2366.52 Yang J Y. Preparation and properties of hemicellulose based thermosensitive hydrogels. Master’s Thesis, South China University of Technology, China,2011(in Chinese).杨静仪.半纤维素基温敏性水凝胶的制备与性能研究.硕士学位论文,华南理工大学,2011.53 Yang J Y, Zhou X S, Fang J. Carbohydrate Polymers,2011,86(3),1113.54 Fang J. Separation of hemicellulose from corncob and preparation of hydrogel. Master’s Thesis, South China University of Technology, China,2012(in Chinese).方驹.玉米芯半纤维素的分离及其水凝胶的制备.硕士学位论文,华南理工大学,2012.55 Liu S, Chen F, Song X, et al. International Journal of Polymer Analysis & Characterization,2016,22(3),187.56 Zhang W, Zhu S, Bai Y, et al. Carbohydrate Polymers,2015,122,11.57 Kim S, Nishimoto S K, Bumgardner J D, et al. Biomaterials,2010,31(14),4157.58 Liu X, Chen Y, Huang Q, et al. Carbohydrate Polymers,2014,110,62.59 Zhang T. Preparation of temperature sensitive polyelectrolyte complex nanoparticles and their drug loading and release. Master’s Thesis, Ludong University, China,2013(in Chinese). 张停.温度敏感性聚电解质络合物纳米粒子的制备及对药物的负载与释放.硕士学位论文,鲁东大学,2013.60 Prabaharan M, Grailer J J, Steeber D A, et al. Macromolecular Bios-cience,2008,8(9),843.61 Rejinold N S, Chennazhi K P, Nair S V, et al. Carbohydrate Polymers,2011,83(2),776.62 Peng Y, Chu H J, Wei H L, et al. Journal of Zhongzhou University,2016,33(4),113(in Chinese).彭云,楚晖娟,魏宏亮,等.中州大学学报,2016,33(4),113.63 Fundueanu G, Constantin M, Ascenzi P, et al. Biomedical Microdevices,2010,12(4),693.64 Gao C, Ren J, Zhao C, et al. Carbohydrate Polymers,2016,151,189.65 Tan R W. Study on alginate-based injectable bone repair materials. Ph.D Thesis, Tsinghua University, China,2011(in Chinese).谭荣伟.海藻酸基可注射骨修复材料的研究.博士学位论文,清华大学,2011.66 Tian M, Wang J, Zhang E, et al. Langmuir,2013,29(25),8076.67 Wang J, Liu G K, Liu P S, et al. Materials Review A: Review Papers,2018,32(1),67(in Chinese).王静,刘红科,刘平生,等.材料导报:综述篇,2018,32(1),67.68 Han X D, Zhang W, Yu K, et al. Materials Review A: Review Papers,2017,31(8),30(in Chinese).韩晓东,张稳,于坤,等.材料导报:综述篇,2017,31(8),30.69 Zhang F, Wu W, Zhang X, et al. Cellulose,2016,23(1),415.70 Ruelgariépy E, Shive M, Bichara A, et al. European Journal of Pharmaceutics & Biopharmaceutics,2004,57(1),53.71 Kim S, Nishimoto S K, Bumgardner J D, et al. Biomaterials,2010,31(14),4157.72 Jiang Y, Meng X, Wu Z, et al. Carbohydrate Polymers,2016,144,245.73 Song X Y. Preparation and characterization of hemicellulose based environmentally sensitive hydrogels. Master’s Thesis, South China University of Technology, China,2015(in Chinese).宋西义.半纤维素基环境敏感性水凝胶的制备与表征.硕士学位论文,华南理工大学,2015.74 Huang L, Shen M, Li R, et al. Oncotarget,2016,7(45),73280.75 Qu Y, Chu B Y, Peng J R, et al. NPG Asia Materials,2015,7(8),e207.76 Zhang N, Xu X, Zhang X, et al. International Journal of Pharmaceutics,2016,497(1-2),210.77 Langer R, Vacanti J P. Science,1993,260(5110),920.78 Thambi T, Phan V H G, Lee D S. Macromolecular Rapid Communications,2016,37(23),1881.79 Richardson S M, Hughes N, Hunt J A, et al. Biomaterials,2008,29(1),85.80 Ramesh N, Chandru K, Saravanan S, et al. International Journal of Biological Macromolecules,2013,54,24.81 Naderimeshkin H, Andreas K, Matin M M, et al. Cell Biology International,2014,38(1),72.82 Yang X B, Bhatnagar R S, Li S. Tissue Engineering,2004,10,1148.83 Kundu A K, Putnam A J. Biochemical and Biophysical Research Communications,2006,347,347.84 Sun B, Ma W, Su F, et al. Journal of Materials Science Materials in Me-dicine,2011,22(9),2111.85 Okabayashi K, Ashrafian H, Zacharakis E, et al. Surgery Today,2014,44(3),405.86 Ten Broek R P, Stommel M W, Strik C, et al. Lancet,2014,383(9911),48.87 Zhang E, Guo Q, Ji F, et al. Acta Biomaterialia,2018,19(8),673.88 Abbadessa A, Mouser V H M, Blokzijl M M, et al. Biomacromolecules,2016,17(6),2137.89 Lu Y, Zheng X W, Zhong K. Chinese Journal of Magnetic Resonance,2017(4),528(in Chinese).路遥,郑新威,钟凯.波谱学杂志,2017(4),528.90 Lu Y. Preparation of thermo-sensitive microgel based MRI contrast agents. Master’s Thesis, University of Science and Technology of China, China,2017(in Chinese).路遥.温敏性微凝胶磁共振成像造影剂的制备.硕士学位论文,中国科学技术大学,2017.91 Feng Q H. Synthesis and properties of hydrogels containing lignin. Ph.D Thesis,South China University of Technology, China,2012(in Chinese).冯清华.含木质素水凝胶的合成及其性能研究.博士学位论文,华南理工大学,2012.92 Ge M C. Preparation and study of multiple responsive hemicellulose based hydrogels. Master’s Thesis, South China University of Technology, China,2016(in Chinese).葛明超.多重响应性半纤维素基水凝胶的制备与研究.硕士学位论文,华南理工大学,2016.
[1] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[2] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[3] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[4] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[5] 杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
[6] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[7] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[8] 何姗姗, 李薇, 王灵志, 卢晗, 张宏亮. 木质与草本生物质燃烧特性及工况优化研究[J]. 《材料导报》期刊社, 2017, 31(6): 50-55.
[9] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[10] 吴明山, 马建锋, 刘杏娥, 田根林, 尚莉莉, 杨淑敏. 生物质基碳包覆纳米磁性颗粒的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 28-34.
[11] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[12] 苗青, 曲建波, 张斐斐, 田荟琳, 张海涛. 可控活性自由基聚合制备端基官能化聚合物研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 101-108.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed