Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 101-108    https://doi.org/10.11896/j.issn.1005-023X.2017.011.014
  材料综述 |
可控活性自由基聚合制备端基官能化聚合物研究进展*
苗青1,2, 曲建波1, 张斐斐1, 田荟琳1, 张海涛1
1 齐鲁工业大学皮革化学与工程学院,济南 250353;
2 烟台华大化学工业有限公司,烟台 264002
Advances in Synthesis of Functionally-terminated Polymer by Controlled/Living Radical Polymerization
MIAO Qing1,2, QU Jianbo1, ZHANG Feifei1, TIAN Huilin1, ZHANG Haitao1
1 School of Leather Chemistry and Engineering, Qilu University of Technology, Jinan 250353;
2 Yantai Hua Da Chemical Industry Co., Ltd,Yantai 264002
下载:  全 文 ( PDF ) ( 1484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 端基官能化聚合物是指那些在聚合物末端或悬垂端含有活性官能团的聚合物。它们可发挥交联剂或扩链剂的作用,从而制备出不同结构特点的嵌段聚合物、接枝聚合物、星型、超支化或树状聚合物。文章主要对引发转移终止剂(Iniferter)法、原子转移自由基聚合(ATRP)、氮氧自由基调控聚合(NMRP)和可逆加成-断裂链转移自由基聚合(RAFT)等可控活性自由基聚合方法在制备端基官能化聚合物中的应用进行了介绍。最后对可控活性自由基聚合在功能性聚合物制备中的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苗青
曲建波
张斐斐
田荟琳
张海涛
关键词:  可控活性自由基聚合  端基官能化聚合物  引发转移终止剂法  原子转移自由基聚合  氮氧自由基活性聚合  可逆加成-断裂链  转移自由基聚合    
Abstract: Functionally-terminated polymer, defined as macromolecules that contain two reactive terminal groups, are used as cross-linkers, chain extenders and important building blocks for various macromolecular structures, including block and graft copolymers, star, hyperbranched or dendritic polymers. This review describes the general techniques for preparing functionally-terminated polymer via controlled/living radical polymerization, including initiator-transfer agent-terminator (inifenter) method, atom transfer radical polymerization, nitroxide mediated radical polymerization, reversible addition-fragmentation chain transfer polymerization. We also provide a prospect upon this field.
Key words:  controlled/living radical polymerization    functionally-terminated polymer    initiator-transfer agent-terminator (iniferter) method    atom transfer radical polymerization    nitroxide mediated radical polymerization    reversible addition-fragmentation chain transfer polymerization
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB34  
基金资助: 国家自然基金青年基金(21303091)
通讯作者:  张海涛:通讯作者,男,1983年生,博士,讲师,主要从事功能有机高分子的合成与应用研究 E-mail:zhanghaitao0218@hotmail.com   
作者简介:  苗青:女, 1973年生,工程师,主要从事新型合成革材料的开发与应用研究
引用本文:    
苗青, 曲建波, 张斐斐, 田荟琳, 张海涛. 可控活性自由基聚合制备端基官能化聚合物研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 101-108.
MIAO Qing, QU Jianbo, ZHANG Feifei, TIAN Huilin, ZHANG Haitao. Advances in Synthesis of Functionally-terminated Polymer by Controlled/Living Radical Polymerization. Materials Reports, 2017, 31(11): 101-108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.014  或          http://www.mater-rep.com/CN/Y2017/V31/I11/101
1 Tasdelen M A, Kahveci M U, Yagci Y. Telechelic polymers by li-ving and controlled/living polymerization methods[J]. Prog Poly Sci,2011,36(4):455.
2 Bayer O. Das di-isocyanat-polyadditionsverfahren(polyurethane) [J]. Angew Chem, 1947,59(9):257.
3 Liu S Y, Pan Q M, Xie J W, et al. Intermacromolecular complexes due to specific interactions. 12. Graft-like hydrogen bonding complexes based on pyridyl-containing polymers and end-functionalized poly-styrene oligomers [J]. Polymer,2000,24(2):6919.
4 Horrion, J, Jerome R, Teyssie Ph. Halato-telechelic polymers. 12. Block copolymerization of polystyrene and polybutadiene via ionic interactions[J]. Polym Sci C Polym Lett,1986,38:69.
5 Otsu T. Iniferter concept and living radical polymerization[J]. J Polym Sci A Polym Chem,2000,38(12):2121.
6 Ferington T E, Tobolsky A V. Organic disulfides as initiators of polymerization: Tetramethylthiuram disulfide[J]. J Am Chem Soc,1955,77(17):4510.
7 Ferington T, Tobolsky A V. Organic disulfides as initiators of polymerization. Part Ⅱ[J]. J Am Chem Soc,1958,80(13):3215.
8 Kwak J, Lacroix-Desmazes P, Robin J, et al. Synthesis of mono functional carboxylic acid poly(methyl methacrylate) in aqueous medium using sur-iniferter. Application to the synthesis of graft copolymers polyethylene-g-poly(methylmethacrylate) and the compatibilization of LDPE/PVDF blends[J]. Polymer,2003,44(18):5119.
9 Clouet G, Juhl H J. Free-radical synthesis of alpha-omega-primary amino functionalized polyisoprene through the functional thermal iniferter [bis(N-(2-phthalimidoethyl)piperazine)]thiuramdisulfide[J]. Macromol Chem Phys,1994,195(1):243.
10 Lu J M, Xia X W, Guo X, et al. Synthesis, characterization, and property of end-functionalized telechelic PSt via ATRP[J]. J Appl Polym Sci,2008,108(5):3430.
11 Arimori S, Ohashi S, Matsuda T. Novel iniferter-based synthetic approach to hetero-telechelic precursors and multiblock copolymers composed of vinyl polymer blocks and condensation linkages[J]. React Funct Polym,2007,67(11):1346.
12 Nair C P R, Clouet G, Chaumont P. Functionalization of PMMA by a functional iniferter— Kinetics of polymerization of MMA using N,N′-diethyl-N,N′-bis(2-hydroxyethyl)thiuram disulfide[J]. J Polym Sci A Polym Chem,1989,27(6):1795.
13 Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (Ⅰ)/Cu (Ⅱ) redox process[J]. Macromolecules,1995,28(23):7901.
14 Taskina O S, Binnur Temel A, Tasdelen M A, et al. Synthesis of block copolymers by selective H-abstraction and radical coupling reactions using benzophenone/benzhydrol photoinitiating system[J]. Eur Poly J,2015,62:304.
15 Urbani C N, Bell C A, Whittaker M R, et al. Self-Assembly of amphiphilic polymeric dendrimers synthesized with selective degradable linkages[J]. Macromolecules,2008,41(1):1057.
16 Agut W, Taton D, Lecommandoux S. A versatile synthetic approach to polypeptide based rod-coil block copolymers by click che-mistry[J]. Macromolecules,2007,40(16):5653.
17 Okcu S S, Durmaz Y Y, Yagci Y. Synthesis and characterization of telechelic block co-polymers by combination of atom transfer radical polymerization and click chemistry processes[J]. Des Monomers Polym,2010,13(5):459.
18 Duxbury C J, Wang W X, Heise A, et al. Can block copolymers be synthesized by a single-step chemoenzymatic route in supercritical carbon dioxide? [J]. J Am Chem Soc,2005,127(8):2384.
19 Yurteri S, Cianga I, Yagci Y. Synthesis and characterization of α, ω-telechelic polymers by atom transfer radical polymerization and coupling processes[J]. Macromol Chem Phys,2003,204(14):1771.
20 Blazquez J A, Areizaga J, Iruin J J, et al. Synthesis of aromatic amine end-functional poly(methylmethacrylate) by atom-transfer ra-dical polymerisation[J]. React Funct Polym,2006,66(10):1073.
21 Lammens M, Fournier D, Fijten M W M, et al. Star-shaped polyacrylates: Highly functionalized architectures via CuAAc click conjugation[J]. Macromol Rapid Commun,2009,30(23):2049.
22 Li C H, Hu J M, Yin J, et al. Click coupling fullerene onto thermoresponsive water-soluble diblock copolymer and homopolymer chains at defined positions[J]. Macromolecules,2009,42(14):5007.
23 Storms-Miller W K, Pugh C. Prop-2-yn-1-yl 2-Bromo-2-methylpro- panoate: Identification and suppression of side reactions of a commonly used terminal alkyne-functional ATRP initiator[J]. Macromolecules,2015,48(12),3803.
24 Tasdelen M A, Kahveci M U, Yagci Y. Telechelic polymers by li-ving and controlled/living polymerization methods[J].2011,36(4):456.
25 Coessens V, Matyjaszewski K. End group transformation of polymers prepared by ATRP substitution to azides[J]. J Macromol Sci A Pure Appl Chem,1999,36(5-6):667.
26 Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis[J]. Chem Rev,2009,109(11):4963.
27 Opsteen J A, van Hest J C M. Modular synthesis of abc type block copolymers by “click” chemistry[J]. J Polym Sci A Polym Chem,2007,45(14):2913.
28 Coessens V, Matyjaszewski K. Synthesis of polymers with amino end groups by atom transfer radical polymerization[J]. J Macromol Sci A Pure Appl Chem,1999,36(5-6):811.
29 Garamszegi L, Donzel C, Carrot G, et al. Synthesis of thiol end-functional polystyrene via atom transfer radical polymerization [J]. React Funct Polym,2003,55(2):179.
30 Kyeremateng S O, Amado E, Blume A, et al. Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with ‘click’ chemistry[J]. Macromol Rapid Commun,2008,29:1140.
31 Kyeremateng S O, Henze T, Busse K, et al. Effect of hydrophilic block—A length tuning on the aggregation behavior of alphaomega-perfluoroalkyl end-capped ABA triblock copolymers in water[J]. Macromolecules,2010,43(5):2502.
32 Uygun M, Tasdelen M A, Yagci Y. Influence of type of initiation on thiol-ene “click” chemistry[J]. Macromol Chem Phys,2010,211(1):103.
33 Yoshikawa C, Goto A, Fukuda T. Reactions of polystyrene radicals in a monomer-free atom transfer radical polymerization system[J]. E-Polymers,2002,013:1.
34 Sarbu T, Lin K Y, Spanswick J, et al. Synthesis of hydroxy- telec-helic poly(methyl acrylate) and polystyrene by atom transfer radical coupling[J]. Macromolecules,2004,37(26):9694.
35 Qin Y, Cui C Z, Jakle F. Silylated initiators for the efficient preparation of borane-end-functionalized polymers via ATRP[J]. Macromolecules,2007,40(5):1413.
36 Toquer G, Monge S, Antonova K, et al. Synthesis via ATRP and anchoring properties of ammonium-terminated monofunctional or telechelic polystyrenes[J]. Macromol Chem Phys,2007,208(1):94.
37 Kopping J T, Tolstyka Z P, Maynard H D. Telechelic aminooxy polystyrene synthesized by ATRP and ATR coupling[J]. Macromo-lecules,2007,40(24):8593.
38 Tolstyka Z P, Kopping J T, Maynard H A. Straightforward synthesis of cysteine-reactive telechelic polystyrene[J]. Macromolecules,2008,41(3):599.
39 Bon S A F, Steward A G, Haddleton D M. Modification of the ω-bromo end group of poly(methacrylate)s prepared by copper(Ⅰ)-mediated living radical polymerization[J]. J Polym Sci A Polym Chem,2000,38(15):2678.
40 Durmaz Y Y, Cianga I, Yagci Y. Studies on the preparation of telechelic polymers by atom transfer radical polymerization and cross coupling processes[J]. E-Polymers,2006,050:1.
41 Vinas J, Chagneux N, Gigmes D, et al. SG1-based alkoxyamine bearing a N-succinimidyl ester: A versatile tool for advanced polymer synthesis[J]. Polymer,2008,49(17):3639.
42 Chagneux N, Trimaille T, Rollet M, et al. Synthesis of poly(n-butyl acrylate)-b-poly(ε-caprolactone) through combination of SG1 nitroxide-mediated polymerization and Sn(Oct)2-catalyzed ring-ope-ning polymerization: Study of sequential and one-step approaches from a dual initiator[J]. Macromolecules,2009,42(24):9435.
43 Hill N L, Braslau R. Synthesis of arylethyl-functionalized nalko-xyamine initiators and use in nitroxide-mediated radical polymerization[J]. J Polym Sci A Polym Chem,2007,45(11):2341.
44 Ruehl J, Morimoto C, Stevens D J, et al. Carboxylic acid-and hydroxy-functionalized alkoxyamine initiators for nitroxide mediated radical polymerization[J]. React Funct Polym,2008,68(11):1563.
45 Nicolay R, Marx L, Hemery P, et al. Synthesis and evaluation of a functional, water-and organo-soluble nitroxide for “living” free radical polymerization [J]. Macromolecules,2007,40(17):6067.
46 Lessard B, Tervo C, De Wahl S, et al. Poly(tert-butyl methacrylate/styrene) macroinitiators as precursors for organo- and water-soluble functional copolymers using nitroxide-mediated controlled radical polymerization[J]. Macromolecules,2010,43(2):868.
47 Becer C R, Babiuch K, Pilz D, et al. Clicking pentafluorostyrene copolymers: Synthesis, nanoprecipitation, and glycosylation[J]. Macromolecules,2009,42(7):2387.
48 Rodlert M, Harth E, Rees I, et al. End-group fidelity in nitroxide-mediated living free-radical polymerizations[J]. J Polym Sci A Polym Chem,2000,38(1):4749.
49 Turro N J, Lem G, Zavarine I S. A living free radical exchange reaction for the preparation of photoactive end-labeled monodisperse polymers[J]. Macromolecules,2000,33(26):9782.
50 Lepoittevin B, Perrot X, Masure M, et al. New route to synthesis of cyclic polystyrenes using controlled free radical polymerization[J]. Macromolecules,2001,34(3):425.
51 Chessa G, Scrivanti A, Matteoli U, et al. Synthesis of three-and six-arms polystyrene via living/controlled free radical polymerisation[J]. Polymer,2001,42(23):9347.
52 Guillaneuf Y, Dufils P E, Autissier L, et al. Radical chain end chemical transformation of SG1-based polystyrenes[J]. Macromolecules,2010,43(1):91.
53 Keddie D J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization[J]. Chem Soc Rev,2014,43(2),496.
54 Hill M R, Carmean R N, Sumerlin B S. Expanding the scope of RAFT polymerization: Recent advances and new horizons[J]. Macromolecules,2015,48(16),5459.
55 Golas P L, Matyjaszewski K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials[J]. Chem Soc Rev,2010,39(4):1338.
56 Moad G, Chong Y K, Postma A, et al. Advances in raft polymerization: The synthesis of polymers with defined end-groups[J]. Polymer,2005,46(19):8458.
57 Willcock H, O′Reilly R K. End group removal and modification of RAFT polymers[J]. Polym Chem,2010,1(2):149.
58 Boyer C, Otazaghine B, Boutevin B, et al. Synthesis of maleimide- terminated n-butyl acrylate oligomers by atom transfer radical polymerization: Study of their copolymerization with vinyl ethers[J]. J Polym Sci A Polym Chem,2005,43(18):4303.
59 Thomas D B, Convertine A J, Hester R D, et al. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations[J]. Macromolecules,2004,37(5):1735.
60 Boyer C, Bulmus V, Davis T P. Efficient usage of thiocarbonates for both the production and the biofunctionalization of polymers[J]. Macromol Rapid Commun,2009,30(7):493.
61 Scales C W, Convertine A J, McCormick C L. Fluorescent labeling of RAFT-generated poly (N-isopropylacrylamide) via a facile ma-leimide-thiol coupling reaction[J]. Biomacromolecules,2006,7(5):1389.
62 Roth P J, Wiss K T, Zentel R, et al. Synthesis of reactive telechelic polymers based on pentafluorophenyl esters[J]. Macromolecules,2008,41(22):8513.
63 Schilli C, Lanzendorfer M G, Muller A H E. Benzyl and cumyl dithiocarbamates as chain transfer agents in the RAFT polymerization of N-isopropylacrylamide. In situ FT-NIR and MALDI-TOF MS investigation[J]. Macromolecules,2002,35(18):6819.
64 Llauro M F, Loiseau J, Boisson F, et al. Unexpected end-groups of poly(acrylic acid) prepared by RAFT polymerization[J]. J Polym Sci A Polym Chem,2004,42(21):5439.
65 Hruby M, Korostyatynets V, Benes M J, et al. Bifunctional ion exchange resin with thiol and quaternary ammonium groups for the sorption of arsenate[J]. Collect Czech Chem Commun,2003,68(11):2159.
66 Zhou T C, Jørgensen L, Mattebjerg A M, et al. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT preci-pitation polymerization: A step forward towards multi-functio-nalities[J]. RSC Adv,2014,4(57):30292.
67 Alfurhood J A, Sun H, Bachler P R. Hyperbranched poly(N-(2-hydroxypropyl)methacrylamide) via RAFT self-condensing vinyl polymerization[J]. Polym Chem,2016,7(11):2099.
68 Xu J T, Tao L, Boyer C, et al. Combining thio-bromo “click” che-mistry and RAFT polymerization: A powerful tool for preparing functionalized multiblock and hyperbranched polymers[J]. Macromolecules,2010,43(1):20.
69 Hiruta Y, Nagumo Y, Miki A. Effects of terminal group and chain length on temperature-responsive chromatography utilizing poly(N-isopropylacrylamide) synthesized via RAFT polymerization[J]. RSC Adv,2015,5(89):73217.
70 Tao L, Kaddis C S, Maynard H D, et al. Synthetic approach to homodimeric protein-polymer conjugates[J]. Chem Commun,2009,16:2148.
71 Postma A, Davis T P, Evans R A, et al. Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents[J]. Macromolecules,2006,39(16):5293.
72 Spruell J M, Levy B A, Dichtel W R, et al. Facile postpolymerization end-modification of RAFT polymers[J]. J Polym Sci A Polym Chem,2009,47(2):346.
73 Qiu X P, Tanaka F, Winnik F M. Temperature-induced phase transition of well-defined cyclic poly (N-isopropylacrylamide)s in aqueous solution[J]. Macromolecules,2007,40(20):7069.
74 Dietrich M, Glassner M, Barner-Kowollik C, et al. Facile conver- sion of RAFT polymers into hydroxyl functional polymers: A detailed investigation of variable monomer and RAFT agent combinations[J]. Polym Chem,2010,1(5):634.
75 Braunecker W A, Matyjaszewski K. Controlled/living radical poly- merization: Features, developments, and perspectives[J]. Prog Polym Sci,2007,32(1):93.
76 Boutevin B, David G, Boyer C. Telechelic oligomers and macromo- nomers by radical techniques[J]. Adv Polym Sci,2006,206:31.
77 Debuigne A, Caille J R, Jerome R. Highly efficient cobalt-mediated radical polymerization of vinyl acetate[J]. Angew Chem Int Ed,2005,44(7):1101.
78 Wayland B B, Poszmik G, Mukerjee S L, et al. Living radical polymerization of acrylates by organocobalt porphyrin complexes[J]. J Am Chem Soc,1994,116(17):7943.
79 Goto A, Tsujii Y, Fukuda T. Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization[J]. Polymer,2008,49(24):5177.
80 Yamago S, Yamada T, Togai M, et al. Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: In situ generation of functionalized chain-transfer agents and selective ω-end-group transformations[J]. Chem Eur J,2009,15(4):1018.
[1] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed