Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5140-5146    https://doi.org/10.11896/cldb.19080155
  金属与金属基复合材料 |
防毒面具用Zr-MOFs吸附材料研究进展
周川, 杨博, 杨光, 杨德瑞, 杨小兵
防化研究院,国民核生化灾害防护国家重点实验室, 北京 100191
Progress on Zirconium-based Metal Organic Frameworks (Zr-MOFs) as Absorptive Materials for Gas Masks
ZHOU Chuan, YANG Bo, YANG Guang, YANG Derui, YANG Xiaobing
State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
下载:  全 文 ( PDF ) ( 4391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锆基金属有机骨架(Zr-based metal organic frameworks,Zr-MOFs)材料是由金属锆离子或金属锆簇与多齿有机配体自组装而形成的多孔晶体材料,其优异的稳定性及简单丰富的制备方法使其在有毒气体吸附领域具有广阔的应用前景。本文简述了Zr-MOFs材料的组成及优点,综述了Zr-MOFs作为防毒面具吸附材料对酸性、碱性及中性有毒气体的吸附性能的研究进展,同时展望了其发展前景,指出高效、广谱Zr-MOFs是防毒面具吸附材料研究的重点方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周川
杨博
杨光
杨德瑞
杨小兵
关键词:  多孔介质  Zr-MOFs  防毒面具  吸附  有毒气体    
Abstract: Zr-based metal organic frameworks (Zr-MOFs) are a class of interesting three-dimensional crystalline porous materials constructed by coordination of zirconium metal ions or metal ion clusters with multidentate organic ligands, which make them have a great application prospect in the field of toxic gases adsorption due to the superior stability and ease and versatility of synthesis. In this article, the composition and advantages of Zr-MOFs are introduced. Progress on the adsorption performance of acidic, alkaline and neutral toxic gases by Zr-MOFs adsorption materials in gas masks is discussed in detail, separately. An outlook on the future direction of Zr-MOFs as gas mask adsorption materials is made at the same time. Zr-MOFs with high performance and broad-spectrum used in the gas masks are the focus of the adsorption materials in the future research.
Key words:  porous media    Zr-MOFs    gas mask    adsorption    toxic gas
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB333  
基金资助: 国民核生化灾害防护国家重点实验室基金
通讯作者:  xbyang@pku.edu.com   
引用本文:    
周川, 杨博, 杨光, 杨德瑞, 杨小兵. 防毒面具用Zr-MOFs吸附材料研究进展[J]. 材料导报, 2021, 35(5): 5140-5146.
ZHOU Chuan, YANG Bo, YANG Guang, YANG Derui, YANG Xiaobing. Progress on Zirconium-based Metal Organic Frameworks (Zr-MOFs) as Absorptive Materials for Gas Masks. Materials Reports, 2021, 35(5): 5140-5146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080155  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5140
1 Bourassa S, Bouchard P A, Lellouche F. Respiratory Care,2018,63(11),1350.
2 Fire Science and Engineering,2015,29(4),57.
3 Okudera H, Morita H, Iwashita T, et al. The American Journal of Emergency Medicine,1997,15(5),527.
4 Kurrek M M, Dain S L, Kiss A. Anesthesia and Analgesia,2013,117(1),43.
5 Mohan D, Pittman C U, Bricka M, et al. Journal of Colloid and Interface Science,2007,310(1),57.
6 Chingombe P, Saha B, Wakeman R J. Carbon,2005,43(15),3132.
7 Tan I A W, Ahmad A L, Hameed B H. Journal of Hazardous Materials,2008,154(1),337.
8 Ge X, Wu Z, Manzoli M, et al. Industrial & Engineering Chemistry Research,2019,58(17),7284.
9 Boutillara Y, Tombeur J L, De Weireld G, et al. Chemical Engineering Journal,2019,372(15),631.
10 Kaur B, Gupta R K, Bhunia H. Microporous and Mesoporous Materials,2019,282(1),146.
11 Shi Y, Liu G, Wang L, et al. RSC Advances,2019,9(31),17841.
12 DeCoste J B, Peterson G W. Chemical Reviews,2014,114(11),5695.
13 Padial N M, Quartapelle P E, Montoro C, et al. Angewandte Chemie International Edition,2013,52(32),8290.
14 Khabzina Y, Dhainaut J, Ahlhelm M, et al. Industrial & Engineering Chemistry Research,2018,57(24),8200.
15 Peterson G W, Destefano M R, Garibay S J, et al. Chemistry-A European Journal,2017,23(63),15913.
16 Koutsianos A, Kazimierska E, Barron A R, et al. Dalton Transactions,2019,48(10),3349.
17 Bai Y, Dou Y, Xie L H, et al. Chemical Society Reviews,2016,45(8),2327.
18 Valenzano L, Civalleri B, Chavan S, et al. Chemistry of Materials,2011,23(7),1700.
19 Duerholt J P, Keupp J, Schmid R. European Journal of Inorganic Che-mistry,2016,(27),4517.
20 Pakamore I, Rousseau J, Rousseau C, et al. Green Chemistry,2018,20(23),5292.
21 Motegi H, Yano K, Setoyama N, et al. Journal of Porous Materials,2017,24(5),1327.
22 Connolly B M, Aragones-Anglada M, Gandara-Loe J, et al. Nature Communications,2019,10(1),2345
23 Xu J, Liu J, Li Z, et al. New Journal of Chemistry,2019,43(10),4092.
24 Edubilli S, Gumma S. Separation and Purification Technology,2019,224(1),85.
25 Garibay S J, Farha O K, DeCoste J B. Chemical Communications,2019,55(49),7005.
26 Mehta J, Dhaka S, Paul A K, et al. Environmental Research,2019,174(2),46.
27 Ploskonka A M, DeCoste J B. Journal of Hazardous Materials,2019,375(5),191.
28 Schaate A, Roy P, Godt A, et al. Chemistry-A European Journal,2011,17(24),6643.
29 Katz M J, Brown Z J, Colon Y J, et al. Chemical Communications,2013,49(82),9449.
30 Han Y, Liu M, Li K, et al. Crystal Growth & Design,2017,17(2),685.
31 Uzarevic K, Wang T C, Moon S Y, et al. Chemical Communications,2016,52(10),2133.
32 Huang Y H, Lo W S, Kuo Y W, et al. Chemical Communications,2017,53(43),5818.
33 Li Y, Liu Y, Gao W, et al. Crystengcomm,2014,16(30),7037.
34 Taddei M, Dau P V, Cohen S M, et al. Dalton Transactions,2015,44(31),14019.
35 Yang L, Cai R, Qi W, et al. Chinese Journal of Power Sources,2016,40(8),1605.
36 Rubio-Martinez M, Batten M P, Polyzos A, et al. Scientific Reports,2014,4,5443.
37 Tai S, Zhang W, Zhang J, et al. Microporous and Mesoporous Materials,2016,220(15),148.
38 Goekpinar S, Diment T, Janiak C. Dalton Transactions,2017,46(30),9895.
39 Lu N, Zhou F, Jia H, et al. Industrial & Engineering Chemistry Research,2017,56(48),14155.
40 Ye G, Zhang D, Li X, et al. ACS Applied Materials & Interfaces,2017,9(40),34937.
41 Smith S J D, Konstas K, Lau C H, et al. Crystal Growth & Design,2017,17(8),4384.
42 Marreiros J, Caratelli C, Hajek J, et al. Chemistry of Materials,2019,31(4),1359.
43 Taddei M, Wakeham R J, Koutsianos A, et al. Angewandte Chemie-International Edition,2018,57(36),11706.
44 Li Z, Liao F, Jiang F, et al. Fluid Phase Equilibria,2016,427(15),259.
45 Al-Jadir T M, Siperstein F R. Microporous and Mesoporous Materials,2018,271(15),160.
46 Joshi J N, Zhup G, Lee J J, et al. Langmuir,2018,34(29),8443.
47 DeCoste J B, Demasky T J, Katz M J, et al. New Journal of Chemistry,2015,39(4),2396.
48 Jiao Y, Liu Y, Zhu G, et al. Journal of Physical Chemistry C,2017,121(42),23471.
49 Carter J H, Han X, Moreau F Y, et al. Journal of the American Chemical Society,2018,140(46),15564.
50 Cui X, Yang Q, Yang L, et al. Advanced Materials,2017,29(28),1606929.
51 Savage M, Cheng Y, Easun T L, et al. Advanced Materials,2016,28(39),8705.
52 Ebrahim A M, Levasseur B, Bandosz T J. Langmuir,2013,29(1),168.
53 Peterson G W, Mahle J J, DeCoste J B, et al. Angewandte Chemie-International Edition,2016,55(21),6235.
54 Zhou L, Zhang X, Chen Y. Materials Letters,2017,197(15),167.
55 Lemus J, Martin-Martinez M, Palomar J, et al. Chemical Engineering Journal,2012,211(15),246.
56 Shen L, Liang R, Luo M, et al. Physical Chemistry Chemical Physics,2015,17(1),117.
57 DeCoste J B, Browe M A, Wagner G W, et al. Chemical Communications,2015,51(62),12474.
58 Jasuja H, Peterson G W, Decoste J B, et al. Chemical Engineering Science,2015,124(3),118.
59 Kim K C, Yu D, Snurr R Q. Langmuir,2013,29(5),1446.
60 Kim K C, Moghadam P Z, Fairen-Jimenez D, et al. Industrial & Engineering Chemistry Research,2015,54(13),3257.
61 Joshi J N, Garcia-Gutierrez E Y, Moran C M, et al. Journal of Physical Chemistry C,2017,121(6),3310.
62 Driscoll D M, Troya D, Usov P M, et al. Journal of Physical Chemistry C,2018,122(26),14582.
63 Driscoll D M, Troya D, Usov P M, et al. Physical Chemistry Chemical Physics,2019,21(9),5078.
64 Haikal R R, Hua C, Perry J J, et al. ACS Applied Materials & Interfaces,2017,9(50),43520.
65 Grissom T G, Sharp C H, Usov P M, et al. Journal of Physical Chemistry C,2018,122(28),16060.
66 Vellingiri K, Kumar P, Deep A, et al. Chemical Engineering Journal,2017,307(1),1116.
67 Zhang X, Yang Y, Song L, et al. Journal of Hazardous Materials,2019,365(5),597.
68 Zhang X, Yang Y, Lv X, et al. Journal of Hazardous Materials,2019,366(15),140.
69 Zhang X, Lv X, Shi X, et al. Journal of Colloid and Interface Science,2019,539(15),152.
[1] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[2] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[3] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[4] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[5] 赵欢欢, 宋香琳, 程灿, 张利亚, 王留成. 麦秸生物质炭对Pb(Ⅱ)的吸附研究[J]. 材料导报, 2020, 34(Z2): 112-116.
[6] 卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
[7] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[8] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[9] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[10] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[11] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[12] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[13] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[14] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[15] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed