Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5158-5165    https://doi.org/10.11896/cldb.19100234
  高分子与聚合物基复合材料 |
柔性可拉伸导电材料用于生理信号获取与反馈的研究简述
孙静1,2,†, 李韩飞1,2,†, 郭培志1, 李光林2, 刘志远2
1 青岛大学材料科学与工程学院,青岛 266071
2 中国科学院深圳先进技术研究院,深圳 518055
A Short Review on Bio-signals Acquisition and Feedback via Soft and Stretchable Conductive Materials
SUN Jing1,2,†, LI Hanfei1,2,†, GUO Peizhi1, LI Guanglin2, LIU Zhiyuan2
1 School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
2 Soft Bio-interface Electronics Lab, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
下载:  全 文 ( PDF ) ( 7361KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物界面柔性导电材料是新兴的、面向生物界面生理信号采集与反馈的电子电路的基本组成部分。由于人体组织本征上具有柔软特性,与之集成的电子电路也需要是柔性可形变的,以达到最基本的力学匹配。当电路变得柔软之后,在同样力的作用下则更容易产生形变,如何实现导电薄膜在大变形下依然保持导电特性变得尤为重要。本文简单介绍了柔性可拉伸导电材料制备过程中常用的弹性体,包括化学交联弹性体、物理交联弹性体,以及几种常见的导电材料如碳基导电材料、金属导电材料以及导电聚合物等,并总结分析了几种可拉伸导电薄膜的制备方法及在体表贴附式与体内植入式的应用,分析评价了现有方法并给出了未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙静
李韩飞
郭培志
李光林
刘志远
关键词:  柔性可拉伸导电材料  生物界面  生理信号  植入式检测    
Abstract: Bio-interface flexible conductive materials is a new and basic component of electronic circuit for bio-interface physiological signal collection and feedback. Due to the intrinsic softness of human tissues, the integrated electronic circuits need to be flexible and deformable to achieve the most basic mechanical matching. When the circuit becomes soft, it is more likely to deform under the same force. How to realize the conductivity of the conductive film under large deformation is particularly important. This review not only briefly introduces the commonly used elastomers in the preparation of flexible stretchable conductive materials, including chemical cross-linked elastomers, physical cross-linked elastomers, but also introduces several conductive materials such as carbon-based conductive materials, metals, conductive polymers, etc. This paper summarizes and analyzes several methods to realize the stretchable conductive film and its application in the body surface attachment and in-vivo implantation, analyzes and evaluates the existing methods and introduces the possible development direction in the future.
Key words:  stretchable conductive materials    bio-interface materials    bio-signals    implantable devices
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB34  
基金资助: 国家自然科学基金(#U1613222;81960419;81760416);粤港澳大湾区人机智能协同重点实验室(#2019B121205007)
通讯作者:  pzguo@qdu.edu.cn; gl.li@siat.ac.cn; zy.liu1@siat.ac.cn   
作者简介:  孙静,2016年6月毕业于青岛大学,获得工学学士学位。现为青岛大学材料科学与工程学院硕士研究生,在郭培志教授的指导下学习,并于2019年8月开始在中科院深圳先进技术研究院联合培养,在刘志远研究员的指导下进行研究。目前主要研究方向为柔性传感器。
李韩飞,2018年毕业于青岛大学,获得学士学位,现为青岛大学材料科学与工程学院硕士研究生,并在中科院深圳先进技术研究院作客座研究生。在刘志远老师指导下从事柔性可拉伸电极材料的研究。
郭培志,青岛大学材料科学与工程学院教授、博士研究生导师。2006年于中国科学院化学研究所获理学博士学位。2006年7月至今在青岛大学从事教学科研工作,主要研究领域为功能材料与电化学。
李光林,中国科学院深圳先进技术研究院研究员、集成所所长、神经工程中心主任、康复与生物医学工程高级专家。中国科学院人机智能协同系统重点实验室主任,深圳市高层次(国家级)领军人才,享受国务院政府特殊津贴专家。
刘志远,中国科学院深圳先进技术研究所研究员。2012毕业于哈尔滨工业大学并获得硕士学位,并于2017年获得新加坡南洋理工大学材料科学与工程博士学位,后继续在新加坡南洋理工大学从事博士后研究工作两年。在此期间,他与新加坡的陈晓东教授和斯坦福大学的鲍哲南教授一起工作。主要致力于柔软可拉伸生物界面传感器的研究,并在知名期刊发表论文30余篇,如Advanced Materials、Journal of the American Chemical Society和ACS Applied Materials & Interfaces等。
引用本文:    
孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
SUN Jing, LI Hanfei, GUO Peizhi, LI Guanglin, LIU Zhiyuan. A Short Review on Bio-signals Acquisition and Feedback via Soft and Stretchable Conductive Materials. Materials Reports, 2021, 35(5): 5158-5165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100234  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5158
1 Cui Y, Wei Q Q, Park H K, et al. Science,2001,293(5533),1289.
2 Hua Q L, Sun J L, Liu H T, et al. Nature Communications,2018,9,244.
3 Khan S, Dang W T, Lorenzelli L, et al. IEEE Transactions on Semiconductor Manufacturing,2015,28(4),486.
4 Lipomi D J, Vosgueritchian M, Tee B C K, et al. Nature Nanotechnology,2011,6(12),788.
5 Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Nature Materials,2010,9(10),859.
6 Schwartz G, Tee B C K, Mei J G, et al. Nature Communications,2013,4,1859.
7 Li M, Li H, Zhong W, et al. ACS Applied Materials & Interfaces,2014,6(2),1313.
8 Li X, Zhang R J, Yu W J, et al. Scientific Reports,2012,2,6.
9 Yamada T, Hayamizu Y, Yamamoto Y, et al. Nature Nanotechnology,2011,6(5),296.
10 Zhao X L, Hua Q L, Yu R M, et al. Advanced Electronic Materials,2015,1,7.
11 Chun K Y, Oh Y, Rho J, et al. Nature Nanotechnology,2010,5(12),853.
12 Zhang Y H, Xu S, Fu H R, et al. Soft Matter,2013,9(33),8062.
13 Ho M D, Liu Y Y, Dong D S, et al. Nano Letters,2018,18(6),3593.
14 Xu S, Zhang Y H, Cho J, et al. Nature Communications,2013,4,1543.
15 Kim T, Canlier A, Kim G H, et al. ACS Applied Materials & Interfaces,2013,5(3),788.
16 Park J H, Han S, Kim D, et al. Advanced Functional Materials,2017,27(29),11.
17 Wang X L, Hu H, Shen Y D, et al. Advanced Materials,2011,23(27),3090.
18 Wang Y, Gong S, Wang S J, et al. ACS Nano,2018,12(10),9742.
19 Jung S, Hong S, Kim J, et al. Scientific Reports,2015,5,17081.
20 Lim S, Son D, Kim J, et al. Advanced Functional Materials,2015,25(3),375.
21 Kim D C, Shim H J, Lee W, et al. Advanced Materials,2019,1902743.
22 Choi S, Han S I, Kim D, et al. Chemical Society Reviews,2019,48,1566.
23 Harito C, Bavykin D V, Yuliarto B, et al. Nanoscale,2019,11,4653.
24 Lope M A, Valentin J L, Carretero J, et al. European Polymer Journal,2007,43,4143.
25 Wang Y, Qiu Y, Ameri S K, et al. Npj Flexible Electronics,2018,2,1.
26 Choi S, Park J, Hyun W, et al. ACS Nano,2015,9,6626.
27 Liang J, Li L, Niu X, et al. Nature Photonics,2013,7,817.
28 Liang J, Li L, Tong K, et al. ACS Nano,2014,8,1590.
29 Islam M R, Beg M D H, Jamari S S. Journal of Applied Polymer Science,2014,131(18),40787.
30 Delebecq E, Pascault J P, Boutevin B, et al. Chemical Reviews,2012,113,80.
31 Kang J, Tok J B H, Bao Z. Nature Electronics,2019,2,144.
32 Kang J, Son D, Vardoulis O, et al. Advanced Materials Technology,2019,4,1800417.
33 Patrick J F, Robb M J, Sottos N R, et al. Nature,2016,540,363.
34 Kim S H, Seo H, Kang J, et al. ACS Nano,2019,13,6531.
35 Kang J, Son D, Wang G J N, et al. Advanced Materials,2018,30,1706846.
36 Wu W. Science and Technology of Advanced Materials,2019,20,187.
37 Song J, Jiang H, Liu Z J, et al. International Journal Of Solids And Structures,2008,45,3107.
38 Khang D Y, Rogers J A, Lee H H. Advanced Functional Materials,2009,19,1526.
39 Rogers J A, Someya T, Huang Y. Science,2010,327,1603.
40 Qi Y, Kim J, Nguyen T D, et al. Nano Letters,2011,11,1331.
41 Kim K K, Hong S, Cho H M, et al. Nano Letters,2015,15,5240.
42 Dickey M D, Chiechi R C, Larsen R J, et al. Advanced Functional Materials,2008,18,1097.
43 Dickey M D. Advanced Materials,2017,29,1606425.
44 Wu W. Nanoscale,2017,9,7342.
45 Wei Y, Xinzhou W, Weibing G, et al. Journal of Semiconductor Techno-logy and Science,2018,39,015002.
46 Niu X Z, Peng S L, Liu L Y, et al. Advanced Materials,2007,19,2682.
47 Domenech S C, Bendo L, Mattos D J S, et al. Polymers & Polymer Composites,2009,30,897.
48 Boland C S, Khan U, Ryan G, et al. Science,2016,354,1257.
49 Chen Z, Ren W, Gao L, et al. Nature Materials,2011,10,424.
50 Shin M K, Oh J, Lima M, et al. Advanced Materials,2010,22,2663.
51 Lu T, Finkenauer L, Wissman J, et al. Advanced Functional Materials,2014,24,3351.
52 Stoyanov H, Kollosche M, Risse S, et al. Advanced Materials,2013,25,578.
53 Ding H, Zhong M, Wu H, et al. ACS Nano,2016,10,5991.
54 Hur J, Im K, Kim S W, et al. ACS Nano,2014,8,10066.
55 Norton J J S, Lee D S, Lee J W, et al. Proceedings of the National Academy of Sciences of the United States of America,2015,112(13),3920.
56 Xu L, Gutbrod S R, Bonifas A P, et al. Nature Communications,2014,5,3329.
57 Choi S, Han S I, Jung D, et al. Nature Nanotechnology,2018,13(11),1048.
58 Kim D H, Ghaffari R, Lu N, et al. Proceedings of the National Academy of Sciences of the United States of America,2012,109(49),19910.
59 Kim D H, Lu N, Ghaffari R, et al. Nature Materials,2011,10(4),316.
60 Minev I R, Musienko P, Hirsch A, et al. Science,2015,347(6218),159.
61 Khodagholy D, Gelinas J N, Thesen T, et al. Nature Neuroscience,2015,18(2),310.
62 Viventi J, Kim D H, Vigeland L, et al. Nature Neuroscience,2011,14(12),1599.
63 Xie C, Liu J, Fu T M, et al. Nature Materials,2015,14(12),1286.
64 Song E, Chiang C-H, Li R, et al. Proceedings of the National Academy of Sciences of the United States of America,2019,116(31),15398.
65 Rubehn B, Bosman C, Oostenveld R, et al. Journal of Neural Enginee-ring,2009,6(3),036003.
66 Kim S J, Cho K W, Cho H R, et al. Advanced Functional Materials,2016,26(19),3207.
67 Ware T, Simon D, Hearon K, et al. Macromolecular Materials and Engineering,2012,297(12),1193.
68 Zhang Y, Mickle A D, Gutruf P, et al. Science of Advanced Materials,2019,5(7),3108.
69 Qusba A, RamRakhyani A K, So J H, et al. IEEE Sensors Journal,2014,14(4),1074.
70 Shi L, Zhu T, Gao G, et al. Nature Communications,2018,9(1),2630.
71 Pu X, Liu M, Chen X, et al. Science Advances,2017,3,5.
72 Matsuzaki R,Tabayashi K. Advanced Functional Materials,2015,25(25),3806.
73 Lee J H, Jeong Y R, Lee G, et al. ACS Applied Materials & Interfaces,2018,10(33),28027.
[1] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[2] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[3] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[4] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[5] 刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
[6] 姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
[7] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[8] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[9] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[10] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[11] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[12] 王馨博, 苏茹月, 栗丽, 梁国杰, 赵越, 栾志强, 李凯, 习海玲. 锆基金属-有机骨架呼吸道防护材料研究进展[J]. 材料导报, 2020, 34(23): 23121-23130.
[13] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[14] 余冬燕, 吴幸雅, 闫共芹, 曹杰亮. 稀土掺杂磷酸盐荧光粉的研究进展[J]. 材料导报, 2020, 34(Z2): 41-47.
[15] 廖磊, 吕承航, 黄维刚, 秦霸. 电沉积法制备纳米SnO2及其应用综述[J]. 材料导报, 2020, 34(Z2): 57-62.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed