Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23057-23063    https://doi.org/10.11896/cldb.19100123
  无机非金属及其复合材料 |
磷化铟量子点的合成及其显示器件应用研究进展
林拱立, 杨志文, 李万万
上海交通大学材料科学与工程学院,上海 200240
Progress on Synthesis and Display Application of Indium Phosphide Quantum Dots
LIN Gongli, YANG Zhiwen, LI Wanwan
School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240, China
下载:  全 文 ( PDF ) ( 5111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 量子点材料由于具有发光范围可调性优异、发光颜色纯和量子效率高等特点,可作为发光层应用于显示器件中引起人们的广泛关注。目前市场上普遍使用的Ⅱ-Ⅵ族Cd类量子点的半高宽可以窄至20 nm以下,量子效率接近100%,光学性能优异,但其含有的重金属Cd元素限制了实际的应用。磷化铟量子点材料由于具有不含重金属元素、发光纯度及量子效率较高等特点,是一种理想的替代Cd类量子点的半导体纳米发光材料。
然而,磷化铟量子点材料及其显示器件的性能与Cd类量子点及其器件性能相比仍然存在一定差距。近年来,通过反应过程中前驱体活性调节、表面控制、壳层的有效包覆等方面的改进,磷化铟量子点的颜色纯度和发光效率得到了大幅度的提升。目前磷化铟量子点的半高宽可以窄至35 nm,量子效率可达约93%。同时,通过器件结构的优化,磷化铟量子点显示器件的外量子效率已由2011年的0.008%提升到12%。
为了获得发光性能优异的磷化铟量子点材料,可以通过使用不同磷源以及调节磷铟比例的方法有效控制反应前驱体的活性,通过长时间抽真空的方法有效抑制磷化铟量子点表面氧化层出现等来提高其颜色纯度。通过避免壳层生长过程中铟离子掺杂影响,及熵配体的引入等方法得到高量子效率的磷化铟量子点。同时,将光学性能优异的磷化铟量子点作为发光层应用于显示器件,并优化电子空穴传输层材料的性能和结构,可以有效提升器件的性能。
本文围绕如何提高磷化铟量子点的发光颜色纯度和量子效率这两个方面的研究现状进行了总结,并介绍了磷化铟量子点在显示器件方面的应用进展,最后对磷化铟量子点材料合成、显示应用方面存在的问题以及今后的研究方向进行了讨论和展望,以期为制备高性能的磷化铟量子点材料及其显示器件提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林拱立
杨志文
李万万
关键词:  量子点  磷化铟  颜色纯度  量子效率  电致发光  显示器件    
Abstract: Quantum dots (QDs) have attracted tremendous interest due to their excellent optical properties such as broad tunable emission, high color purity and quantum yield, and are employed in display application as emission layer. Cd-based QDs are generally usedin the commercial application for their narrow full width at half maximum (FWHM) of photo luminescent (PL) spectrum could be lower than 20 nm, high quantum yield (QY) up to about 100%. But the toxic heavy metal Cd is restricted in the actual application. Therefore, heavy metal free indium phosphine (InP) QDs is an attractive alternative for their relatively high color purity and high fluorescence.
However, the optical properties of InP QDs and InP QDs based LED are worse than those of Cd-based QDs and Cd-based QLED, respectively. In the past few years, great improvement has been made through the control of precursors reactivity and the surface oxidation, effective growth of shell, and its FWHM could be as narrow as 35 nm, QY could be raised to ~93%. Moreover, external quantum yield (EQE) of InP QDs based LED have been greatly improved form the promoting of QLED structure from 0.008% to 12%.
To obtain InP QDs with high color purity, the precursors reactivity has been effective control through employing different kinds of phosphine precursor and different P∶In ratio, and the surface oxidation have been greatly inhibited through long time vacuum. To obtain InP QDs with high quantum yield, indium incorporation has been avoided during epitaxial growth of shell, and entropic ligands were introduced. After using InP QDs with excellent optical properties as emission layer, the electron and hole transporting layers with optimized structure, InP QDs based QLED have been obtained with both high EQE and luminescence.
This review summarizes recent research development on how to obtain InP QDs with concurrent high color purity and PL QY. And the improvement of display application of InP QDs are also introduced. Finally, the challenges as well as the future directions of synthetic method and application in display are discussed.
Key words:  quantum dots    indium phosphide    color purity    quantum yield    electroluminescent    display device
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TB34  
  TN312+.8  
基金资助: 上海市科委基础研究重大项目(16JC1400604);国家自然科学基金(81671782)
通讯作者:  wwli@sjtu.edu.cn   
作者简介:  林拱立,上海交通大学材料科学与工程学院&金属基复合材料国家重点实验室硕士研究生,师从李万万研究员。目前主要从事磷化铟量子点材料的设计、制备及其在光电器件方面的应用研究。
杨志文,于2011年获得大连理工大学材料科学与工程学院硕士学位。目前为上海交通大学材料科学与工程学院&金属基复合材料国家重点实验室博士研究生,师从李万万研究员。主要从事量子点的设计、制备及其在光电器件方面的应用研究。
李万万,上海交通大学研究员,博士研究生导师。于2004年获得上海大学材料学博士学位,2005年加入上海交通大学材料科学与工程学院&金属基复合材料国家重点实验室,2013年升任研究员。他的研究涉及量子点材料的设计、制备及其在光电器件方面的应用研究,有机-无机微纳米功能复合材料及其在生物医学诊断和治疗中的应用。他已在科学同行评审的国际期刊上发表了70多篇文章,包括Chemical Society Reviews、Materials Today、Advanced Materials、Angewandte Chemie International Edition、ACS Nano、Advanced Functional MaterialsMaterials Horizons等。
引用本文:    
林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
LIN Gongli, YANG Zhiwen, LI Wanwan. Progress on Synthesis and Display Application of Indium Phosphide Quantum Dots. Materials Reports, 2020, 34(23): 23057-23063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100123  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23057
1 Zhao T S, Oh N, Jishkariani D, et al. Journal of the American Chemical Society,2019,141(38),15145.
2 Yang Z W, Gao M Y, Wu W J, et al. Materials Today,2019,24,69.
3 Ekimov A I, Onushchehko A A. ZhETF Pis ma Redaktsiiu,1981,34(6),345.
4 Efros A L, Efros A L. Soviet Physics Semiconductors-Ussr,1982,16(7),772.
5 Rossetti R, Ellison J L, Gibson J M, et al. The Journal of Chemical Physics,1984,80(9),4464.
6 Reed M A, Randall J N, Aggarwal R J, et al. Physical Review Letters,1988,60(6),535.
7 Zhou J H, Zhu M Y, Meng R Y, et al. Journal of the American Chemical Society,2017,139(46),16556.
8 Chen O, Zhao J, Chauhan V P, et al. Nature Materials,2013,12(5),445.
9 Nasilowski M, Spinicelli P, Patriarche G, et al. Nano Letters,2015,15(6),3953.
10 Nastiti C M, Mohammed Y, Telaprolu K C, et al. Skin Pharmacology and Physiology,2019,32(3),1.
12 Green M. Current Opinion in Solid State & Materials Science,2002,4(6),355.
13 Tamang S, Lincheneau C, Hermans Y, et al. Chemistry of Materials,2016,28(8),2491.
14 Wells R L, Pitt C G, McPhail A T, et al. Chemistry of Materials,1989,1(1),4.
15 Baquero E A, Virieux H, Swain R A, et al. Chemistry of Materials,2017,29(22),9623.
16 Kim K, Yoo D, Choi H, et al. Angewandte Chemie International Edition in English,2016,55(11),3714.
17 Tessier M D, Dupont D, Nolf K D, et al. Chemistry of Materials,2015,27(13),4893.
18 Yang S J, Oh J H, Kim S, et al. Journal of Materials Chemistry C,2015,3(15),3582.
19 Hahm D, Chang J H, Jeong B G, et al. Chemistry of Materials,2019,31(9),3476.
20 Li Y, Hou X Q, Dai X L, et al. Journal of the American Chemical Society,2019,141(16),6448.
21 Wang H C, Zhang H, Chen H Y, et al. Small,2017,13(13),1603962
22 Micic O I, Curtis C J, Jones K M, et al. The Journal of Physical Chemistry,1994,98(19),4966.
23 Micic O I, Sprague J R, Curtis C J, et al. The Journal of Physical Che-mistry,1995,99(19),7754.
24 Battaglia D, Peng X G. Nano Letters,2002,2(9),1027.
25 Xie R, Battaglia D, Peng X G. Journal of the American Chemical Society,2007,129(50),15432.
26 Ramasamy P, Kim N, Kang Y S, et al. Chemistry of Materials,2017,29(16),6893.
27 Harris D K, Bawendi M G. Journal of the American Chemical Society,2012,134(50),20211.
28 Gary D C, Glassy B A, Cossairt B M. Chemistry of Materials,2014,26(4),1734.
29 Joung S, Yoon S, Han C S, et al. Nanoscale Research Letters,2012,7(1),93
30 Franke D, Harris D K, Xie L, et al. Angewandte Chemie-International Edition,2015,54(48),14299.
31 Ramasamy P, Ko J, Kang J W, et al. Chemistry of Materials,2018,30(11),3643.
32 Gary D C, Terban M W, Billinge S J L, et al. Chemistry of Materials,2015,27(4),1432.
33 Cossairt B M. Chemistry of Materials,2016,28(20),7181.
34 Xie L, Shen Y, Franke D, et al. Journal of the American Chemical Society,2016,138(41),13469.
35 Cros-Gagneux A, Delpech F, Nayral C, et al. Journal of the American Chemical Society,2010,132(51),18147.
36 Virieux H, Troedec M L, Cros-Gagneux A, et al. Journal of the American Chemical Society,2012,134(48),19701.
37 Xie L, Harris D K, Bawendi M G, et al. Chemistry of Materials,2015,27(14),5058.
38 Ramasamy P, Kim N, Kang Y, et al. Chemistry of Materials,2017,29(16),6893.
39 Sun S, Yuan D, Xu Y, et al. ACS Nano,2016,10(3),3648.
40 Peng X G. Advanced Materials,2003,15(5),459.
41 Peng X G, Wickham J, Alivisatos A P. Journal of the American Chemical Society,1998,120(21),5343.
42 Kim K, Yoo D, Choi H, et al. Angewandte Chemie-International Edition,2016,55(11),3714.
43 Pietra F, De T L, Hoekstra A W, et al. ACS Nano,2016,10(4),4754.
44 Reiss P, Protière M, Li L. Small,2009,5(2),154.
45 Biadala L, Siebers B, Beyazit Y, et al. ACS Nano,2016,10(3),3356.
46 Kim S, Kim T, Kang M, et al. Journal of the American Chemical Society,2012,134(8),3804.
47 Park J P, Lee J, Kim S. Scientific Reports,2016,6,30094
48 Cao F, Wang S, Wang F, et al. Chemistry of Materials,2018,30(21),8002.
49 Lim J, Park M, Bae W K, et al. ACS Nano,2013,7(10),9019.
50 Dai X L, Deng Y Z, Peng X G, et al. Advanced Materials,2017,29(14),1607022.
51 Shen H B, Gao Q, Zhang Y B, et al. Nature Photonics,2019,13(3),192.
52 Wang L S, Lin J, Hu Y S, et al. ACS Applied Materials & Interfaces,2017,9(44),38755.
53 Cao W R, Xiang C Y, Yang Y X, et al. Nature Communications,2018,9(1),2608.
54 Lim J, Bae W K, Lee D, et al. Chemistry of Materials,2011,23(20),4459.
55 Yang X Y, Zhao D W, Leck K S, et al. Advanced Materials,2012,24(30),4180.
56 Jo J, Kim J, Lee K, et al. Optics Letters,2016,41(17),3984.
57 Shen W, Tang H Y, Yang X L, et al. Journal of Materials Chemistry C,2017,5(32),8243.
58 Nasilowski M, Mahler B, Lhuillier E, et al. Chemical Reviews,2016,116(18),10934.
[1] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[2] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[3] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[4] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[5] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[6] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[7] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[8] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[9] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[10] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[11] 陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
[12] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[13] 黄训吉,杨杰,李广洋,王茺,杨宇. 分子束外延制备稀铁磁性MnxGe1-x量子点研究进展[J]. 材料导报, 2018, 32(19): 3338-3347.
[14] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[15] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed