Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3338-3347    https://doi.org/10.11896/j.issn.1005-023X.2018.19.008
  无机非金属及其复合材料 |
分子束外延制备稀铁磁性MnxGe1-x量子点研究进展
黄训吉1,2,杨杰1,2,李广洋1,2,王茺1,2,杨宇2,3
1 云南大学材料科学与工程学院,昆明 650091;
2 云南大学国家光电子能源材料国际联合研究中心,昆明 650091;
3 云南大学能源研究院,昆明 650091
Progress in Preparation of Diluted Ferromagnetic MnxGe1-x Quantum Dots by Molecular Beam Epitaxy
HUANG Xunji1,2, YANG Jie1,2, LI Guangyang1,2, WANG Chong1,2, YANG Yu2,3
1 School of Materials Science and Engineering, Yunnan University, Kunming 650091;
2 International JointResearch Center for National Optoelectronic Energy Materials, Yunnan University, Kunming 650091;
3 School of Energy, Yunnan University, Kunming 650091
下载:  全 文 ( PDF ) ( 2126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀磁半导体(Diluted magnetic semiconductors,DMSs )能同时利用电子的电荷和自旋特性,从而具有了半导体材料和磁性材料的双重性能,它利用载流子及其自旋,使自旋电子器件应用于信息存储、传输、处理成为可能。因而,作为微电子产业的重要组成部分,Mn掺杂的Ge量子点(Quantum dots,QDs)稀铁磁性半导体材料由于具备与当今Si基微电子学技术的兼容性以及具有比Ⅲ-Ⅴ族DMSs更高居里温度(Curie temperature,TC)的可能性而引起广泛关注。制备的MnxGe1-x QDs自旋电子器件具备小尺寸、低能耗、数据处理快、集成度高、稳定性好等优异性能,对未来自旋电子器件的发展起到举足轻重的作用。
虽然,由Mn掺杂的Ⅳ族MnxGe1-x QDs DMSs材料被认为是实现室温可操控性电子自旋器件以及可控铁磁性能的理想材料候选者。但想要制备高性能、高稳定性的MnxGe1-x QDs DMSs材料依旧面临诸多挑战。其一,虽然通过提高基质中磁性掺杂剂的浓度可以使系统获得高的TC,但Mn掺杂剂在Ge中的极限溶解度值远低于致使系统获得高TC的掺杂剂浓度值;其二,Ge1-xMnx QDs中高的Mn掺杂浓度容易导致金属间析出相(如:Mn5Ge3和Mn11Ge8)的形成;其三,Mn掺入到Ge QDs中需要低的生长温度和低的表面扩散率,而QDs的自组装生长总是需要高的生长温度和高的表面扩散率,即实现更高的亚稳态掺杂水平可能是增强DMSs的TC的主要限制因素;其四,铁磁性和高TC的起源和增强机制的理论解释仍不明确,值得深入探究。
因此,近年来研究者们主要从选择合适的生长参数,优化MnxGe1-x QDs薄膜的制备工艺方面不断尝试,并取得了丰硕的成果。其一,MnxGe1-x QDs的TC提高至400 K以上;其二,明确了金属间析出相(Mn5Ge3和Mn11Ge8)的TC分别为296 K和270 K,其TC趋于室温;其三,发现了电场控制铁磁性能和磁运输性能,首次将电场控制铁磁性温度提高至300 K,并将其归结为量子限制效应;其四,由于MnxGe1-x QDs中量子效应的存在,硼(B)的调制掺杂可以增加MnxGe1-x QDs中的空穴浓度,从而增强其TC
本文归纳了MnxGe1-x稀铁磁性半导体材料的研究进展,重点归纳了分子束外延(Molecular beam epitaxy,MBE)制备稀铁磁性MnxGe1-xQDs的研究进展。并分别介绍了各生长参数对MnxGe1-x QDs的形态及其磁性能的影响。分析了目前研究中仍待解决的难点,展望了该材料在微电子领域的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄训吉
杨杰
李广洋
王茺
杨宇
关键词:  Mn掺杂  MnxGe1-x量子点  MnxGe1-x薄膜  高居里温度  稀磁半导体    
Abstract: Diluted magnetic semiconductors (DMSs) integrate the dual properties of semiconductor materials and magnetic materials by simultaneously utilizing the charge and spin characteristics of electrons. The use of charge carriers and their spins makes it possible for spintronic devices to be used for information storage, transmission and processing. Consequently, Mn-doped Ge quantum dots(QDs) diluted ferromagnetic semiconductors, as an important part of the microelectronics industry, have aroused enormous interests because of its compatibility with current Si microelectronics and the possibility to possess higher Curie temperature (TC) than those of group Ⅲ-Ⅴ materials. The prepared MnxGe1-x QDs spintronic devices exhibit excellent performances including small size, low energy consumption, fast data processing, high integration and favorable stability, which will play a crucial role in the future development of spintronic devices.
Although Mn doped group Ⅳ MnxGe1-x QDs DMSs materials are considered to be ideal candidates for room temperature controllable electronic spin devices and controllable ferromagnetic properties. However, the MnxGe1-x QDs DMSs materials with high performance and stability are still confronted with great challenges.Ⅰ. Although high TC of the system can be obtained by raising the concentration of magnetic dopant in the matrix, the solubility limit of Mn dopant in Ge is far lower than the dopant concentration which endows the system with high TC. Ⅱ. The high concentration of Mn dopant in Ge1-xMnx QDs is likely to cause the formation of intermetallic precipitates (Mn5Ge3 and Mn11Ge8). Ⅲ. Low growth temperature and low surface diffusivity are demanded for incorporating Mn into Ge under the state much higher than chemical equilibrium, while high growth temperature and high surface diffusivity are always required in self-assembly growth of QDs. Namely, achieving higher doping levels of metastable may become a breakthrough point for enhancing TC in DMSs. Ⅳ. The theoretical explanation of ferromagnetism, the origin of high TC and enhancement mechanism of TC are still unclear and worth further exploration.
Therefore, great attempts have been made and fruitful results have been achieved by researchers in optimizing the preparation process of MnxGe1-x QDs films by selecting suitable growth parameters in recent years. Ⅰ. The TC of MnxGe1-x QDs is raised above 400 K. Ⅱ. It is defined that the TC of intermetallic precipitates (Mn5Ge3 and Mn11Ge8) are 296 K and 270 K, which tends to room temperature. Ⅲ. The electric-field-controlled ferromagnetism and the magnetotransport properties have been found. Electric-field manipulation of ferromagnetism temperature has been raised over 300 K for the first time, which was attributed to the quantum confinement effect. Ⅳ. Due to the existence of quantum effects in MnxGe1-x QDs, the modulated doping of boron (B) can increase the hole concentration in the MnxGe1-x QDs, which contributed to enhancing the TC of the MnxGe1-x QDs.
This review offers a retrospection of the research efforts with respect to the MnxGe1-x diluted ferromagnetic semiconductor materials, and provides elaborated descriptions about the MnxGe1-x QDs prepared by molecular beam epitaxy (MBE). And the effects of growth parameters on the morphology and magnetic properties of QDs are also introduced. The difficulties that remain to be solved in the current research are briefly described, and the application prospects for the material in the field of microelectronics are proposed.
Key words:  Mn doped    MnxGe1-x quantum dots    MnxGe1-x thin film    high Curie temperature    diluted magnetic semiconductors
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11564043;11274266);云南省科技计划面上项目(No.2016FB002)和云南省中青年学术技术带头人(后备人才)项目
作者简介:  黄训吉:男,硕士研究生,1991年生,研究方向为稀磁掺杂半导体光磁电性能 E-mail:18468052050@163.com;王茺:通信作者,男,1978年生,博士,副研究员,研究方向为低维纳米光电子材料与器件 E-mail:cwang@ynu.edu.cn;
引用本文:    
黄训吉,杨杰,李广洋,王茺,杨宇. 分子束外延制备稀铁磁性MnxGe1-x量子点研究进展[J]. 材料导报, 2018, 32(19): 3338-3347.
HUANG Xunji, YANG Jie, LI Guangyang, WANG Chong, YANG Yu. Progress in Preparation of Diluted Ferromagnetic MnxGe1-x Quantum Dots by Molecular Beam Epitaxy. Materials Reports, 2018, 32(19): 3338-3347.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.008  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3338
1 Janisch R, Gopal P, Spaldin N A. Transition metal-doped TiO2 and ZnO-present status of the field[J].Journal of Physics Condensed Matter,2005,17(27):18.
2 Wang L, Liu T, Jia Q, et al. Research Update: Strain and composition effects on ferromagnetism of Mn0.05Ge0.95 quantum dots[J].Apl Materials,2016,4(4):153.
3 Wang L, Liu T, Hu X, et al. Carrier effects on ferromagnetism of MnxGe1-x quantum dots[J].Applied Physics Letters,2017,111(7):072103.
4 Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J].Nature Materials,2010,9(12):965.
5 Reuther H, Talut G, Mücklich A, et al. Magnetism in Ge by ion implantation with Fe and Mn[J].Journal of Physics D: Applied Physics,2012,45(39):395001.
6 Bolduc M, Awo-Affouda C, Stollenwerk A, et al. Above room temperature ferromagnetism in Mn-ion implanted Si[J].Physical Review B,2005,71(3):3302.
7 Bonanni A. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths[J].Semiconductor Science & Technology,2007,22(9):R41.
8 Cohen G, Fleurov V, Kikoin K. Vacancy mediated ferromagnetic interaction in TiO2 doped with magnetic ions[J].Journal of Applied Physics,2007,101(9):R59.
9 Coey J M D. High-temperature ferromagnetism in dilute magnetic oxides[J].Journal of Applied Physics,2005,97(10):854.
10 Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications[J].Vacuum,2000,56(3):159.
11 Meyer F, Schwebel C, Pellet C, et al. Epitaxial growth of single-crystal Si1-xGex on Si(100) by ion beam sputter deposition[J].Thin Solid Films,1990,184(1):117.
12 Gunnella R, Morresi L, Pinto N, et al. Magnetization of epitaxial MnGe alloys on Ge(111) substrates[J].Surface Science,2005,577(1):22.
13 Yoon I T, Park C J, Kang T W. Ferromagnetism in Mn-implanted Ge/Si nanostructure material[J].Journal of Superconductivity & Novel Magnetism,2010,23(1):115.
14 Chang L L, Ploog K. Molecular beam epitaxy and heterostructures[M].Springer Netherlands: Martinus Nijhoff Publishers,1985.
15 Xiu F, Wang Y, Kim J, et al. Electric-field-controlled ferromagne-tism in high-Curie-temperature Mn0.05Ge0.95 quantum dots[J].Nature Materials,2010,9(4):337.
16 Yong J C, Chang H K, Han S K, et al. Ferromagnetic Ge1-xMx (M=Mn, Fe, and Co) Nanowires[J].Chemistry of Materials,2008,20(14):4694.
17 Kazakova O, Kulkarni J S, Holmes J D, et al. Room-temperature ferromagnetism in MnxGe1-x nanowires[J].Physical Review B Condensed Matter,2005,72(9):094415.
18 Guchhait S, Jamil M, Ohldag H, et al. Ferromagnetism in Mn-implanted epitaxially grown Ge on Si(100)[J].Physical Review B Condensed Matter,2011,84(2):1651.
19 Jamet M, Barski A, Devillers T, et al. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns[J].Nature Materials,2006,5(8):653.
20 Nie T, Tang J, Kou X, et al. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-TC MnxGe1-x nanomesh[J].Nature Communications,2016,7:12866.
21 Xiu F, Yong W, Jin Z, et al. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots[J].Nano Reviews,2012,2:5896.
22 Xiu F, Wang Y, Kim J, et al. Room-temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots[J].ACS Nano,2010,4(8):4948.
23 Nie T, Kou X, Tang J, et al. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism[J].Nanoscale,2017,9(9):3086.
24 Dolph M C, Kim T, Yin W, et al. Magnetic properties of ion implanted Ge1-xMnx thin films solidified through pulsed laser melting[J].Journal of Applied Physics,2011,109(9):093917.
25 Nie T, Tang J, Wang K L. Quest for high-Curie temperature Ge1-x-Mnx diluted magnetic semiconductors for room-temperature spintronics applications[J].Journal of Crystal Growth,2015,425:279.
26 Nolph C A, Kassim J K, Floro J A, et al. Addition of Mn to Ge quantum dot surfaces-interaction with the Ge QD {105} facet and the Ge(001) wetting layer[J].Journal of Physics Condensed Matter,2013,25(31):315801.
27 Yin W, Kell C D, He L, et al. Enhanced magnetic and electrical properties in amorphous Ge∶Mn thin films by non-magnetic codoping[J].Journal of Applied Physics,2012,111(3):033916.
28 Kobayashi N P, Talin A A, Davydov A V, et al. Magnetic doping of Ge-quantum dots: Growth studies exploring the feasibility of modulating QD properties[J].Invited Paper,2014,9174:917400.
29 Gotoh K, Oshima R, Sugaya T, et al. Effect of deposition rate on the characteristics of Ge quantum dots on Si (001) substrates[J].Thin Solid Films,2014,557:80.
30 Mouton I, Lardé R, Talbot E, et al. Composition and morphology of self-organized Mn-rich nanocolumns embedded in Ge: Correlation with the magnetic properties[J].Journal of Applied Physics,2012,112(11):113918.
31 Portavoce A, Abbes O, Spiesser A, et al. Mn-Ge nanocluster formation vs. diluted magnetic semiconductuor formation[J].Scripta Materialia,2015,100:70.
32 Réotier P D D, Prestat E, Bayle-Guillemaud P, et al. Core-shell nanostructure in a Ge0.9Mn0.1 film observed via structural and magnetic measurements[J].Physical Review B,2015,91:24.
33 Park Y D, Hanbicki A T, Erwin S C, et al. A group-Ⅳ ferromagnetic semiconductor: MnxGe1-x[J].Science,2002,295(5555):651.
34 Prestat E, Porret C, Favre-Nicolin V, et al. Investigations of segregation phenomena in highly strained Mn-doped Ge wetting layers and Ge quantum dots embedded in silicon[J].Applied Physics Letters,2014,104(10):102409.
35 Ma Y J, Zhong Z, Yang X J, et al. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate[J].Nanotechnology,2013,24(1):015304.
36 Awschalom D D, Flatté M E. Challenges for semiconductor spintronics[J].Nature Physics,2007,3(3):153.
37 Tanaka M, Yokoyama M, Hai P N, et al. Chapter 11 properties and functionalities of MnAs/Ⅲ-Ⅴ hybrid and composite structures[J].Semiconductors & Semimetals,2008,82(08):455.
38 Tsui F, He L, Ma L, et al. Novel germanium-based magnetic semiconductors[J].Physical Review Letters,2003,91(17):177203.
39 Bihler C, Jaeger C, Vallaitis T, et al. Structural and magnetic pro-perties of Mn5Ge3 clusters in a dilute magnetic germanium matrix[J].Applied Physics Letters,2006,88(11):3020.
40 Braak H, Gareev R R, Bürgler D E. Magnetic characteristics of epitaxial Ge(Mn,Fe) diluted films—A new room temperature magnetic semiconductor?[J].Journal of Magnetism & Magnetic Materials,2005,286:46.
41 Cho S, Choi S, Hong S C, et al. Ferromagnetism in Mn-doped Ge[J].Physical Review B,2002,66(3):3606.
42 Li A P, Shen J, Thompson J R, et al. Ferromagnetic percolation in MnxGe1-x dilute magnetic semiconductor[J].Applied Physics Letters,2005,86(15):R1865.
43 Jungwirth T, Sinova J, Masek J, et al. Theory of ferromagnetic (Ⅲ,Mn) Ⅴ semiconductors[J].Review of Modern Physics,2006,78(3).
44 Matsukura F, Ohno H, Shen A, et al. Transport properties and origin of ferromagnetism in (Ga,Mn)As[J].Physical Review B,1998,57(4):R2037.
45 Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J].Science,2000,287(5455):1019.
46 Bougeard D, Ahlers S, Trampert A, et al. Clustering in a precipitate-free GeMn magnetic semiconductor[J].Physical Review Letters,2006,97(23):237202.
47 Gao W, Wang L, Hou D, et al. The effect of Co ion implantation on Ge1-xMnx films[J].Applied Surface Science,2011,257(21):8871.
48 Deng J X, Tian Y F, Yan S S, et al. Magnetism of amorphous Ge1-xMnx magnetic semiconductor films[J].Journal of Applied Physics,2008,104(1):013905.
49 Yada S, Sugahara S, Tanaka M. Magneto-optical and magnetotransport properties of amorphous ferromagnetic semiconductor Ge1-x-Mnx thin films[J].Applied Physics Letters,2008,93(19):1849.
50 Wang K L, Xiu F. Quest of electric field controlled spintronics in MnGe[J].Thin Solid Films,2010,518(6):S104.
51 Devillers T, Jamet M, Barski A, et al. Structure and magnetism of self-organized Ge1-xMnx nanocolumns on Ge(001)[J].Physical Review B,2007,76(20):5306.
52 Yu I S, Jamet M, Devillers T, et al. Spinodal decomposition to control magnetotransport in (Ge,Mn) films[J].Physical Review B,2010,82(3):1558.
53 Jamet M, Barski A, Devillers T, et al. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns[J].Nature Materials,2006,5(8):653.
54 Conta G, Amato G, Cosson M, et al. Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx[J].Science and Technology of Advanced Materials,2017,18(1):34.
55 Stroppa A, Picozzi S, Continenza A, et al. Electronic structure and ferromagnetism of Mn-doped group-Ⅳ semiconductors[J].Physical Review B,2003,68(15):846.
56 Tang J, Nie T. Spin transport in Ge nanowires for diluted magnetic semiconductor-based nonvolatile transpinor[C]∥ECS and Smeq Joint International Meeting. Los Angeles,2014,64(6).
57 Knobel R, Samarth N, Crooker S A, et al. Spin-polarized quantum transport and magnetic field-dependent carrier density in magnetic two-dimensional electron gases[J].Physica E: Low-dimensional Systems and Nanostructures,2000,6(1-4):786.
58 Jiang J H, Wu M W. Electron spin relaxation in bulk Ⅲ-Ⅴ semiconductors from a fully microscopic kinetic spin Bloch equation approach[J].2009,79(12):125206.
59 Xiu F, Ovchinnikov I V, Upadhyaya P, et al. Voltage-controlled ferromagnetic order in MnGe quantum dots[J].Nanotechnology,2010,21(37):375606.
60 Kassim J, Nolph C, Jamet M, et al. Ge1-xMnx heteroepitaxial quantum dots: Growth, morphology, and magnetism[J].Journal of Applied Physics,2013,113(7):073910.
61 Yoon I T, Park C J, Lee S W, et al. Ferromagnetism in self-assembled Ge quantum dots material followed by Mn-implantation and annealing[J].Solid-State Electronics,2008,52(6):871.
62 Ma X, Lou C. The ferromagnetic properties of Ge magnetic quantum dots doped with Mn[J].Applied Surface Science,2012,258(7):2906.
63 Ma X, Lou C. The electromagnetic properties of the Mn doped Ge/Si quantum dots diodes[J].Materials Science and Engineering: B,2013,178(2):174.
64 Le T G, Nam D N H, Dau M T, et al. The effects of Mn concentration on structural and magnetic properties of Ge1-xMnx diluted magnetic semiconductors[J].2012,292(1):012012.
65 Schulthess T C, Butler W H. Electronic structure and magnetic interactions in Mn doped semiconductors[J].Journal of Applied Physics,2001,89(11):7021.
66 Schilfgaarde M V, Mryasov O N. Anomalous exchange interactions in Ⅲ-Ⅴ dilute magnetic semiconductors[J].Physical Review B,2001,63(63):233205.
67 Wang Y, Zou J, Zhao Z, et al. Mn behavior in Ge0.96Mn0.04 magnetic thin films grown on Si[J].Journal of Applied Physics,2008,103(6):651.
68 Wang Y, Zou J, Zhao Z, et al. Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96Mn0.04 thin films[J].Applied Physics Letters,2008,92(10):951.
69 Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electric fields[J].Nature,2008,455(7212):515.
70 Kassim J, Nolph C, Jamet M, et al. Mn solid solutions in self-assembled Ge/Si(001)quantum dot heterostructures[J].Applied Phy-sics Letters,2012,101(24):242407.
71 Zhou X, Shi B, Jiang Z, et al. Boron-mediated growth of Ge quantum dots on Si(100) substrate[J].Thin Solid Films,2000,369(1):92.
72 Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism[J].Nature,2000,408(6815):944.
73 Chiba D, Matsukura F, Ohno H. Electric-field control of ferromagnetism in (Ga,Mn)As[J].Applied Physics Letters,2006,150(16):951.
74 Myers R C, Sheu B L, Jackson A W, et al. Antisite effect on hole-mediated ferromagnetism in (Ga,Mn)As[J].Physical Review B,2006,74(74):2952.
75 Nikonov D E, Bourianoff G I. Operation and modeling of semiconductor spintronics computing devices[J].Journal of Superconductivity & Novel Magnetism,2008,21(8):479.
76 Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future[J].Science,2001,294(5546):1488.
77 utic' I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications[J].Microelectronics Reliability,2004,30(2):323.
78 Tang J, Wang C Y, Chang L T, et al. Electrical spin injection and detection in Mn5Ge3/Ge/Mn5Ge3 nanowire transistors[J].Nano Letters,2013,13(9):4036.
79 Nazmul A M, Kobayashi S, Sugahara S, et al. Electrical and optical control of ferromagnetism in Ⅲ-Ⅴ semiconductor heterostructures at high temperature (~100 K)[J].Japanese Journal of Applied Phy-sics,2004,43(43):L233.
80 Nepal N, Luen M O, Zavada J M, et al. Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films[J].Applied Physics Letters,2009,94(13):944.
81 Chen J, Wang K L, Galatsis K. Electrical field control magnetic phase transition in nanostructured MnxGe1-x[J].Applied Physics Letters,2007,90(1):012501.
[1] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[2] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[3] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[4] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[5] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[10] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[11] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[12] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[13] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[14] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[15] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed