Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1119-1124    https://doi.org/10.11896/cldb.17100069
  无机非金属及其复合材料 |
介晶半导体材料的合成及应用研究进展
孙健武1, 葛美英2, 尹桂林1,2, 张芳2, 何丹农1,2
1 上海交通大学材料科学与工程学院,上海 200240
2 纳米技术及应用国家工程研究中心,上海200241
Advances in Synthesis and Application of mesocrystals Semiconductor
SUN Jianwu1, GE meiying2, YIN Guilin1,2, ZHANG Fang2, HE Dannong1,2
1 School of materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2 National Engineering Research Center for Nanotechnology, Shanghai 200241
下载:  全 文 ( PDF ) ( 2928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统半导体纳米材料大部分为多晶结构或单晶结构。而介晶是一类由初级纳米颗粒以结晶学有序的方式自组装而成的纳米粒子超结构,具有类似单晶的原子结构和散射特征,既保留着初级纳米颗粒的晶界,又表现出强烈的各向异性,从而具有与多晶和单晶均不同的独特结构与性能。例如,介晶结构中的初级纳米颗粒以一定的方式相互连接,与无序堆积的多晶相比,具有极高的结晶性,甚至接近单晶,能够有效减小载流子在材料内部的复合概率;初级纳米颗粒之间的晶界并未完全消失,存在一定的空隙,具有较高的空隙率和比表面积以提供更多的活性位点;初级纳米颗粒在定向吸附过程中有序地取向排列,暴露出高能晶面,显著提高了其反应活性。
金属氧化物半导体材料在光催化、电化学和气敏等领域应用广泛,其反应机理均是发生在材料表面的气-液、气-气、气-固反应,因而均需要材料具有大的比表面积和较高的表面活性。而介晶结构是以纳米颗粒作为基本构筑单元的非经典结晶产物,具有比表面积大、孔隙率高、表面活性高等优点,有望获得远超过传统材料的优异性能,因此近年来介晶结构金属氧化物半导体的制备成为了研究热点。
研究者们基于物理或者化学驱动的纳米架构自组装过程,通过改进传统制备工艺,如水热法、溶剂热法、离子热法等,成功调控纳米材料成核、生长的方式,制备出具有介晶结构的TiO2、ZnO、CuO、SnO2等半导体材料,并且通过优化制备工艺,可以调节材料的比表面积、孔隙率和表面活性。进一步分析介晶结构与性能的构效关系,对推广介晶结构材料的应用具有重大的指导意义。但是目前介晶的研究还处于起步阶段,各种组分、形貌和结构的介晶的合成、结晶理论的基础研究以及材料的应用开发都还有待进一步探索。
本文归纳了介晶半导体材料的研究进展 ,包括制备方法及不同制备方法所获得材料的特征及优缺点;介绍了半导体介晶材料在光催化性能、电化学性能和气敏性能等领域的应用现状,总结了介晶结构与性能的构效关系,对介晶结构的发展方向进行了展望并指出了其面临的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙健武
葛美英
尹桂林
张芳
何丹农
关键词:  介晶结构  非经典结晶  三维超结构  半导体材料  高能晶面    
Abstract: As is known to all, conventional semiconductor nanomaterials are mostly polycrystals or single crystals. While, mesocrystals belong to a kind of superstructures self-assembled from primary nanoparticles in a crystalline order, showing identical atomic structures and scattering patterns to single crystals. The grain boundaries of primary nanoparticles retained in mesocrystal as well as its intense anisotropism, resulting in distinct structures and properties different from those of ordinary polycrystals and single crystals. For instance, primary nanoparticles in mesocrystal connect with each other in a certain way, therefore, compared with disordered polycrystals, mesocrystal exhibits much higher crystallinity even close to single crystal, which effectively reduces recombination probability of carriers in the material. The grain boundary between the primary nanoparticles is not completely disappeared, and the retained grain boundaries bring high porosity and specific surface which provides more active sites. The primary nanoparticles are arranged in order during oriented attachment, and high energy facets are exposed, leading to the great enhancement in activity.
metal oxide semiconductors possess widespread application in photocatalysis, electrochemistry and gas sensor. Reactions in different applications all take place on the material surfaces like gas-liquid, gas-gas, gas-solid, where large specific surface area and high surface activity are required. mesocrystals with nanoparticles as basic building blocks are expected to obtain superior properties to conventional mateirals, therefore preparation of mesocrystalline metal oxide semiconductors has become the research focus.
Based on nano self-assembly process driven by physical or chemical forces,researchers have successfully regulated the nucleation and growth of nanomaterials, and synthesized semiconductor mesocrystals like TiO2, ZnO, CuO and SnO2 by improving traditional preparation technology, including hydrothermal, solvothermal, ion-thermal methods. Besides, specific surface area, porosity and surface activity of the mesocrystals could be tailored by means of optimizing preparation technology. Further analysis of structure-property relationship is of great significance for popularizing the application of mesocrystalline materials. However, the study of mesocrystals is still in its infancy. The synthesis of mesocrystals with diverse components, morphologies and structures, and basic research on crystallization theory along with application development need to be further explored.
This paper reviews the research progress of mesocrystalline semiconductors, mainly including preparation methods,and the characteristics of materials obtained by various methods are analyzed. And the current applications in the field of photocatalytic, electrochemical and gas sensing properties are presented. Besides, some existing issues about the preparations,properties and applications of mesocrystals are pointed out, and the outlook of further development is also given.
Key words:  mesocrystals structure    non-classical crystallization    three-dimensional superstructure    semiconductor materials    high-energy surface
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TB34  
基金资助: 上海青年科技启明星计划项目(16QB1402400);国家自然科学基金(21677095)
通讯作者:  meiyingge@163.com   
作者简介:  孙健武,2016年6月毕业于北京理工大学,获得工学学士学位。现为上海交通大学材料科学与工程学院研究生,在何丹农教授的指导下进行研究。目前主要研究领域为金属氧化物气敏半导体。葛美英,2012年毕业于中国科学院上海技术物理研究所,获理学博士学位。现就职于纳米技术及应用国家工程研究中心,兼任上海交通大学企业硕士导师。研究领域为纳米敏感材料结构设计与调控及敏感机制。
引用本文:    
孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
SUN Jianwu, GE meiying, YIN Guilin, ZHANG Fang, HE Dannong. Advances in Synthesis and Application of mesocrystals Semiconductor. Materials Reports, 2019, 33(7): 1119-1124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100069  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1119
1 Colfen H, Antonietti m. Angewandte Chemie International Edition, 2005, 44(35),5576.
2 Colfen H, mann S. Angewandte Chemie International Edition, 2003, 42(21), 2350.
3 Bian Z, Tachikawa T, majima T. Journal of Physical Chemistry Letters, 2012, 3(11), 1422.
4 Zhou L, O'Brien P. Small, 2008, 4(10),1566.
5 Song R Q, Cölfen H. Advanced materials, 2010, 22(12), 1301.
6 Gebauer D, Völkel A, Cölfen H. Science, 2008, 322(5909), 1819.
7 Baumgartner J, Dey A, Bomans P H, et al. Nature materials, 2013, 12(4), 310.
8 Zhuang Z, Huang F, Lin Z, et al. Journal of the American Chemical Society, 2012, 134(39), 16228.
9 Liu Y, Zhu G, Ge B, et al. CrystEngComm, 2012, 14(19), 6264.
10 Deng S, Tjoa V, Fan H m, et al. Journal of the American Chemical Society, 2012, 134(10), 4905.
11 Yang S, Song X, Zhang P, et al. Small, 2014, 10(11), 2270.
12 Wang H, Sun L, Wang H, et al. RSC Advances, 2014, 4(102), 58615.
13 Zhou Y, Wang X, Wang H, et al. Dalton Transactions, 2014, 43(12), 4711.
14 Xu Y J, Lin J, Lu Y, et al. Nanoscale, 2016, 8(27), 13399.
15 Wang D, Sun J, Cao X, et al. Journal of materials Chemistry A, 2013, 1(30), 8653.
16 Sun S, Chang X, Liu T, et al. materials Letters, 2013, 105,54.
17 ma J, Teo J, mei L, et al. Journal of materials Chemistry, 2012, 22(23), 11694.
18 Dong J Y, Lin W H, Hsu Y J, et al. CrystEngComm, 2011, 13(20), 6218.
19 Gu C D, Zheng H, Wang X L, et al. RSC Advances, 2015, 5(12), 9143.
20 Zhou L, Smyth-Boyle D, O’Brien P. Journal of the American Chemical Society, 2008, 130, 12.
21 Zhang Y, Cai J, ma Y, et al. Nano Research, 2017, 10(8),2610.
22 Dang F, Hoshino T, Oaki Y, et al. Nanoscale, 2013, 5(6), 2352.
23 Xu m, Wang F, Ding B, et al. RSC Advances, 2012, 2(6), 2240.
24 Wang m, Zhang Y, Zhou Y, et al. CrystEngComm, 2013, 15(4), 754.
25 Da S R, Goncalves R H, Stroppa D G, et al. Nanoscale, 2011, 3(4), 1910.
26 Sun J, Chen G, Pei J, et al. Journal of materials Chemistry, 2012, 22(12), 5609.
27 Li Z, Dong C K, Yang J, et al. Journal of materials Chemistry A, 2016, 4(7), 2699.
28 Chai Y C, Lin L, Zhao B, et al. materials Review A: Review Papers, 2013, 27(1),38 (in Chinese).
柴瑜超, 林琳, 赵斌, 等. 材料导报:综述篇, 2013, 27(1),38.
29 Chen Q, Chen C, Ji H, et al. RSC Advances, 2013, 3(38), 17559.
30 Tartaj P, Amarilla J m. Advanced materials, 2011, 23(42), 4904.
31 Li X, Wang J, men Y, et al. Applied Catalysis B: Environmental, 2016, 187,115.
32 Chen J, Li G, Zhang H, et al. Catalysis Today, 2014, 224, 216.
33 Zhang A Y, Long L L, Li W W, et al. Chemical Communications (Cambridge, England), 2013, 49(54), 6075.
34 Zhou L, Chen J, Ji C, et al. CrystEngComm, 2013, 15(25), 5012.
35 Chen F, Cao F, Li H, et al. Langmuir, 2015, 31(11), 3494.
36 Yang X, Qin J, Li Y, et al. Journal of Hazardous materials, 2013, 261, 342.
37 Bian Z, Tachikawa T, Kim W, et al. The Journal of Physical Chemistry C, 2012, 116(48), 25444.
38 Sun S, Zhang X, Zhang J, et al. CrystEngComm, 2013, 15(5),11.
39 Selvamani T, manjula C A, Anandan S, et al. Crystal Research and Technology, 2015, 50(2), 143.
40 Kuang Q, Yang S H. ACS Applied materials & Interfaces, 2013, 5(9), 8.
41 Hong Z, Wei m, Lan T, et al. Energy & Environmental Science, 2012, 5(1), 5408.
42 Hong Z, Wei m, Lan T, et al. Nano Energy, 2012, 1(3), 466.
43 Ye J, Liu W, Cai J, et al. Journal of the American Chemical Society, 2011, 133(4), 933.
44 Chen S, Wang m, Ye J, et al. Nano Research, 2013, 6(4), 10.
45 Nakajima K, Oaki Y, Imai H. ChemPlusChem, 2013, 78(11),1379.
46 Xuan T m, Yin G L, Ge m Y, et al. materials Review A:Review Papers, 2015, 29(1), 132(in Chinese).
宣天美, 尹桂林, 葛美英, 等. 材料导报:综述篇, 2015, 29(1), 132.
47 Wu D, Cao K, Wang H, et al. Journal of Colloid and Interface Science, 2015, 456, 125.
48 Ramasamy K, Tien B, Archana P S, et al. materials Letters, 2014, 124, 227.
49 Zhao Y, Lu Y, Hu Y, et al. Small, 2010, 6(21), 2436.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed