Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1109-1118    https://doi.org/10.11896/cldb.18010220
  材料与可持续发展(二)——材料绿色制造与加工* |
合金元素在淬火配分钢中的应用研究进展
田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生
华北理工大学教育部现代冶金技术重点实验室,唐山 063210
Application of Alloy Elements in Quenching and Partitioning Steel:an Overview
TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng
Key Laboratory of the ministry of Education for modern metallurgy Technology, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 41073KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 淬火配分钢作为第三代先进高强汽车钢候选材料之一,兼备低成本、高强度、高塑性等突出优点。与第一代、第二代先进高强钢相比,淬火配分钢更加符合现代汽车轻量化、绿色化与安全化的发展趋势,可用于制造保险杠、碰撞梁与A/B/C柱等强度高且成型复杂的冲压件。其中,合金元素是淬火配分钢的研发基础,近年来通过发挥钢材内合金元素的作用,遵循“多相”、“亚稳”、“多尺度”组织调控理念,使得淬火配分钢在综合性能方面取得了长足的进展。但由于淬火配分钢强度较高(800~1 500 mPa),目前仅宝钢、鞍钢、唐钢等少数国内钢铁企业具备生产能力。
受mn-Si系TRIP钢以及高Si无碳空冷贝氏体钢研发的启示,Speer J G基于高碳/中碳含硅钢实验结果以及热力学与动力学模拟,较全面地揭示了淬火-配分的概念。其难点在于淬火温度及配分时间的选取,即在保证强度的前提下使C配分最大化,以获得最佳马氏体/奥氏体复相组织配比,由此吸引众多研究者对淬火与配分工艺参数进行不断的探索,并发现在配分过程中将不可避免地引起碳化物析出、奥氏体分解,无法实现理想情况下的C完全配分到奥氏体中,导致残余奥氏体含量仅10%左右,限制延伸率进一步增加。若持续增添C又会恶化焊接性能。为解决这一矛盾,国内外研究者相继提出利用C、mn等合金元素协同配分稳定奥氏体的想法,其中合金元素配分行为及促进其配分的途径成为目前淬火配分钢中奥氏体稳定化的研究焦点。
研究者们利用3D-APT或EPmA技术对不同合金元素在铁素体、奥氏体、渗碳体间的配分行为进行表征并取得了丰硕的成果。钢中主流合金元素C、mn、Si/Al、Cu/Ni在各相间化学势梯度的驱动下进行扩散,其中C、mn、Cu/Ni原子偏向奥氏体一侧扩散,起稳定奥氏体的作用,而Si/Al向铁素体中配分,抑制渗碳体析出。此外,大量实验也证实了两相区加热及变形可强化合金元素的配分行为。
本文简单介绍了淬火配分工艺的特点,阐述了淬火配分钢的增塑机理;并分析了不同合金元素在淬火配分钢中的作用,重点论述了不同合金元素的配分行为;同时根据合金元素的配分特点,详细指出了两种促进合金元素配分的主要途径;最后对合金元素在淬火配分钢中应用的前景进行了展望,为淬火配分钢的产业化发展奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田亚强
黎旺
郑小平
魏英立
宋进英
陈连生
关键词:  淬火配分钢  合金元素  配分行为  两相区加热  形变    
Abstract: As one of the most promising candidates for the 3rd generation advanced high-strength automotive steel, quenching and partitioning (Q&P) steels have attracted wide attention due to their low cost and superior comprehensive mechanical performance. Compared with the 1st and 2nd generation of advanced high strength steel, Q&P steel is more consistent with modern automobile development idea of light weight, environmental friendliness and safety, which is applicable to manufacturing high-strength and complex stamping parts like bumpers, collision beams and A/B/C columns. In particular, alloying elements are fundamental for research and development of Q&P steel. In recent years, by exerting the role of alloy elements in steel and following microstructure control concept of “multiphase”, “metastable” and “multiscale”, Q&P steel has achieved considerable progress in comprehensive performance. Nevertheless, the prohibitive strength of Q&P steel (800—1 500 mPa) has kept manufacturers away, only a few domestic steel enterprises (Baosteel, Ansteel and Tangsteel) possess production capacity.
Inspired by the development of mn-Si TRIP steel and high-Si C-free air-cooled bainite steel, J.G.Speer revealed basic concept of Q&P steel comprehensively based on the experimental results of high carbon or medium carbon Si-contained steel and relative thermodynamics and kinetics simulations analysis. The key procedure lies in the selection of quenching temperature and partitioning time, namely, maximizing C partitioning on the premise of ensuring strength, for the sake of acquiring the optimal martensite/austenite multiphase structure ratio. Thereby numerous researchers are devoted to continuously explore the process parameters of Q&P steel. It has been found that carbides precipitation and austenite decomposition as a competition with C partitioning are inevitable during partitioning process, and it is impossible for C to completely diffuse into austenite, resulting in retained austenite content being only about 10%, which restricts the further increase of elongation. While continue to raise C content will deteriorate welding performance. In order to solve this contradiction, researchers at home and abroad have proposed the idea of stabilizing austenite by co-partitioning of alloying elements like C, mn, etc. Specifically, partitioning behaviors of alloy elements and the way to promote their partitioning in Q&P steel have become the focus of current research on austenite stabilization.
3D-APT or EPmA techniques are employed to characterize the partitioning of diverse alloy elements in ferrite, austenite and cementite and fruitful results have been achieved. As the main alloy elements in steel, C, mn, Si/Al and Cu/Ni diffuses under the drive of chemical potential gradient among phases, in which C, mn and Cu/Ni atoms diffuse toward the austenite side and play the role of stabilizing austenite, while Si/Al is partitioned into ferrite to inhibit cementite precipitation. Besides, a large number of experiments have also confirmed that intercritical heating and deformation can strengthen the partitioning behavior of alloy elements.
This article briefly introduces the characteristics of the quenching and partitioning process, expound the plasticizing mechanism of Q&P steel. Through analysis of the role of various alloy elements in Q&P steel, the partitioning behavior of various alloy elements are discussed with emphasis. meanwhile, according to the partitioning characteristics of alloy elements in different phases, two main ways to promote partitioning behavior of alloy elements are proposed. Finally, the application prospect of alloying elements in Q&P steel is pointed out, which lays an important foundation for the application and industrialization of Q&P steel.
Key words:  quenching and partitioning steel    alloy element    partitioning behavior    intercritical heating    deformation
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51574107);河北省自然科学基金(E2016209048;E2017209048)
通讯作者:  kyckfk@ncst.edu.cn   
作者简介:  田亚强,华北理工大学冶金与能源学院金属材料及加工工程系副主任,河北省新世纪“三三三人才工程”第三层次人选,教授,硕士研究生导师。2002年7月本科毕业于河北理工学院,2009年6月在北京科技大学材料加工工程专业取得博士学位。主要从事新金属材料组织性能控制、合金强韧化机理和高性能钢铁材料成形工艺、金属形变强化工艺与理论、金属基复合材料等方面的研究,获唐山市科技进步一等奖1项。发表《金属学报》、《材料工程》、《工程科学学报》、《材料导报》等学术论文50余篇,SCI、EI检索论文10余篇。陈连生,华北理工大学技术转移中心副主任、科学技术处副处长,博士,教授,硕士研究生导师。国家科技奖励评审专家,中国金属学会青年轧钢工作委员会委员、塑性加工理论与新技术学术委员会委员,河北省冶金学会压力加工委员会委员,河北省新世纪“三三三人才工程”第二层次人选,河北省优秀教师。从事新金属材料组织性能控制、合金强韧化机理和高性能钢铁材料成形工艺、金属形变强化工艺与理论、金属基复合材料等方面的研究,获河北省科技进步奖等省部级奖励5项,市厅级一、二、三等奖8项。发表《金属学报》、《材料工程》、《工程科学学报》、《材料热处理学报》等学术论文80余篇。
引用本文:    
田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview. Materials Reports, 2019, 33(7): 1109-1118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010220  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1109
1 Zhao J W, Jiang Z Y. Progress in materials Science, 2018, 94(5), 174.
2 Ye J L. Journal of Chongqing University of Technology (Natural Science), 2011, 25(12), 19 (in Chinese).
叶九龙. 重庆理工大学学报(自然科学), 2011, 25(12), 19.
3 Toji Y, matsuda H, Herbig m, et al.Acta materialia, 2014, 65(6), 215.
4 Nishikawa A S, Santofimia m J, Sietsma J, et al.Acta materialia, 2018, 142(1), 142.
5 Speer J, matlock D K, Cooman B C D, et al.Acta materialia, 2003, 51(9), 2611.
6 Speer J G, Edmonds D V, Rizzo F C, et al.Current Opinion in Solid State & materials Science, 2004, 8(3-4), 219.
7 Streicher A m, Speer J G, matlock D K, et al. In: Conference Record of the 2004 AIST Conference on Advanced High-Strength Sheet Steels for Automotive Applications. Warrendale, 2004, pp. 51.
8 Speer J G, De moor E, Findley K O, et al. metallurgical and materials Transactions A, 2011, 42(12), 3591.
9 Thomas GA, Speer J G, matlock D K. Iron & Steel Technology, 2008, 5(10), 209.
10 Thomas G A, Speer J G, matlock D K.metallurgical and materials Transactions A, 2011, 42(12), 3652.
11 Speer J G.Phase Transformations in Steels, 2012, 6(5), 247.
12 Wang L, Speer J G.metallography microstructure & Analysis, 2013, 2(4), 268.
13 Yan S, Liu X H, Liu W J, et al. materials Science and Engineering A, 2017, 684(27), 261.
14 Huang m X, He B B.Journal of materials Science & Technology, 2017, 34(3), 417.
15 Fischer F D, Reisner G, Werner E, et al.International Journal of Plasticity, 2000, 16(7), 723.
16 Chatterjee S, Bhadeshia H.materials Science and Technology, 2006, 22(6), 645.
17 Zhao m, Cai L J, Yuan S S, et al. Journal of Chongqing University of Technology(Natural Science), 2018, 32(1),135 (in Chinese).
赵漫,柴林江,袁珊珊,等.重庆理工大学学报(自然科学),2018,32(1),135.
18 Godet S, Harlet P, Delannay F, et al.Steel Research International, 2002, 73(6-7), 280.
19 Jacques P, Furnemont Q, Pardoen T, et al.Acta materialia, 2001, 49(1), 139.
20 Rong Y H, Cheng N L, et al.Acta metallurgica Sinica, 2017, 53(1), 1 (in Chinese).
戎咏华, 陈乃录,等. 金属学报, 2017, 53(1), 1.
21 Zhang K, Zhang m H, Guo Z H, et al. materials Science and Engineering A, 2011, 528(29), 8486.
22 Jing C N, Wang Z C.materials Review, 2004, 18(11), 36 (in Chinese).
景财年, 王作成. 材料导报, 2004, 18(11), 36.
23 Krauss G.metallurgical and materials Transactions A, 2001, 32(4), 861.
24 Zhong N. Research on high strength Q&P and Q-P-T steels. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2009 (in Chinese).
钟宁. 高强度Q&P钢和Q-P-T钢的研究. 博士学位论文, 上海交通大学, 2009.
25 Wang Y. mechanism of ductility enhancement of an advanced high strength-ductility Q-P-T steel and its dynamic mechanical properties. Ph. D. Thesis, Shanghai Jiao Tong University, 2013 (in Chinese).
王颖. 先进高强塑性Q-P-T钢增塑机制及其动态力学性能. 博士学位论文, 上海交通大学, 2013.
26 Xu H F, Zhao J, Cao W Q, et al.materials Science and Engineering A, 2012, 532(15), 435.
27 Suh D W, Park S J, Lee T H, et al.metallurgical and materials Transactions A, 2010, 41(2), 397.
28 Sugimoto K, murata m, muramatsu T, et al.ISIJ International, 2007, 47(9), 1357.
29 Jacques P, Eberle K, Harlet P , et al. In:Conference Record of the 1998 ISS 40th Conference on mechanical Working and Steel Processing. Pittsburgh, 1998, pp. 239.
30 Lee Y K, Han J.materials Science and Technology, 2015, 31(7), 843.
31 Gibbs P J, De moor E, merwin m J, et al.metallurgical and materials Transactions A, 2011, 42(12), 3691.
32 Lee C Y, Jeong J, Han J, et al.Acta materialia, 2015, 84(1), 1.
33 Seol J B, Raabe D, Choi P P, et al.Acta materialia, 2012, 60(17), 6183.
34 Zhu K, mager C, Huang m.Journal of materials Science & Technology, 2017, 33(12), 1475.
35 Hojo T, Sugimoto K, mukai Y, et al.ISIJ International, 2008, 48(6), 824.
36 Johnson R J. Hole expansion of retained austenite containing CmnSi bainitic/martensitic steels. Ph.D. Thesis, Colorado School of mines, USA, 2013.
37 Chen L S, Hu B J, Xu J H, et al. Journal of Wuhan University of Technology-materials, 2017, 32(5), 1179.
38 Kasuya T, Izawa T, Kakeshita T, et al.Welding in the World, 2015, 59(3), 353.
39 Liu Q D. Atom probe tomography study on copper precipitation strengthening and reverseaustenite toughening in HSLA ferritic steel. Ph. D. Thesis, Shanghai University, 2012(in Chinese).
刘庆冬. HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究. 博士学位论文, 上海大学, 2012.
40 Yang C F, Liu Y Z, Chai F, et al.Journal of University of Science and Technology Beijing, 2014, 36(4), 438(in Chinese).
杨才福, 刘翊之, 柴锋, 等. 北京科技大学学报, 2014, 36(4), 438.
41 Wang S, Yang C G, Xu D K, et al.Acta metallurgica Sinica,2014, 50(12), 1453 (in Chinese).
王帅, 杨春光, 徐大可, 等. 金属学报, 2014, 50(12), 1453.
42 Kim S J, Lee C G, Lee T H, et al.Scripta materialia, 2003, 48(5), 539.
43 Yan S, Liu X H, Liu W J, et al. Acta metallurgica Sinica, 2013, 49(8), 917 (in Chinese).
闫述, 刘相华, 刘伟杰, 等. 金属学报, 2013, 49(8), 917.
44 Takaki S, Fujioka m, Aihara S, et al.materials transactions, 2004, 45(7), 2239.
45 Kolli R P, Seidman D N. microscopy and microanalysis, 2014, 20(6), 1727.
46 Cano H, Neff D, morcillo m, et al.Corrosion Science, 2014, 87(10), 438.
47 Kahkonen J. Quenching and partitioning response of carbon-mamganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions. Ph.D. Thesis, Colorado School of mines, Arthur Lakes Library, 2016.
48 Jiao Z B, Luan J H, Zhang Z W, et al.Acta materialia, 2013, 61(16), 5996.
49 matas S, Hehemann R F.Nature 1960,187(4738), 685.
50 Thomas G, Sarikaya m. Lath martensites in carbon steels-are they bainitic, Lawrence Berkeley Lab., CA (USA), 1982.
51 Hsu T Y, Xu Z Y.materials Science Forum, 2007, 561(10), 2283.
52 Thomas G A, Danoix F, Speer J G, et al.ISIJ International, 2014, 54(12), 2900.
53 Santofimia m J, Speer J G, Clarke A J, et al.Acta materialia, 2009, 57(15), 4548.
54 Tan X D, Xu Y B, Yang X L, et al. materials Science and Engineering A, 2014, 594(594), 149.
55 Xu Y B, Tan X D, Yang X L, et al. materials Science and Engineering A, 2014, 607(23), 460.
56 Peng L G, Liu W J, Liu X H, et al.Journal of Northeastern University(Natural Science), 2015, 36(8), 1110 (in Chinese).
彭良贵, 刘伟杰, 刘相华, 等. 东北大学学报 (自然科学版), 2015, 36(8), 1110.
57 Dmitrieva O, Ponge D, Inden G, et al.Acta materialia, 2011, 59(1), 364.
58 Raabe D, Sandlöbes S, millán J, et al.Acta materialia, 2013, 61(16), 6132.
59 Santofimia m J, Zhao L, Povstugar I, et al. In: Conference Record of the 2012 ISSS 3rd International Symposium on The Iron and Steel Institute of Japan. Kyoto, 2012. pp. 155.
60 Tsuchiyama T, Inoue T, Tobata J, et al. Scripta materialia, 2016, 122(9), 36.
61 Hajyakbary F, Sietsma J, Petrov R H, et al.Scripta materialia, 2017, 137(8), 27.
62 Luo X N, Zhong X Y, Luo H W, et al.Journal of Iron and Steel Research, 2015, 22(11), 1015.
63 Danoix F, Sauvage X, Huin D, et al.Scripta materialia, 2016, 121(8), 61.
64 Lee S, Lee S J, Cooman B C D.Scripta materialia, 2012, 66(10), 832.
65 Dai Z B, Ding R, Yang Z G, et al. Acta materialia, 2018, 144(1), 666.
66 matlock D K, Brautigam V E, Speer J G.materials Science Forum, 2003, 426(4), 1089.
67 Seo E J, Cho L, Estrin Y, et al.Acta materialia, 2016, 113(7), 124.
68 Chen L S, Cao H Z, Tian Y Q, et al.materials Review B: Research Papers, 2017, 31(3), 105 (in Chinese).
陈连生, 曹鸿梓, 田亚强,等. 材料导报:研究篇, 2017, 31(3), 105.
69 Tian Y Q, Zhang H J, Chen L S, et al. Journal of materials Engineering, 2016, 44(4), 32 (in Chinese).
田亚强, 张宏军, 陈连生,等. 材料工程, 2016, 44(4), 32.
70 Tian Y Q, Zhang H J, Chen L S, et al.Acta metallurgica Sinica, 2014, 50(5), 531 (in Chinese).
田亚强, 张宏军, 陈连生,等. 金属学报, 2014, 50(5), 531.
71 Lee S, Lee S J, Cooman B C D.Scripta materialia, 2012, 66(10), 832.
72 Toji Y, Yamashita T, Nakajima K, et al. ISIJ International, 2011, 51(5), 818.
73 Liang J, Zhao Z, Tang D, et al.materials Science and Engineering A, 2018, 711(10), 175.
74 Tsuji N, maki T.Scripta materialia, 2009, 60(12), 1044.
75 Liu H P, Jin X, Dong H, et al.materials Characterization, 2011, 62(2), 223.
76 Wang C Y, Chang Y, Yang J, et al.Acta metallurgica Sinica, 2015, 51(8), 913(in Chinese).
王存宇, 常颖, 杨洁, 等. 金属学报,2015, 51(8), 913.
77 miller R L.metallurgical Transactions, 1972, 3(4), 905.
78 Karam-Abian m, Zarei-Hanzaki A, Abedi HR, et al. marerials Science and Engeering A, 2016, 651(10), 233.
79 Chen L S, Li Y, Zhang m S, et al.Acta metallurgica Sinica, 2017, 53(11), 1418 (in Chinese).
陈连生, 李跃, 张明山, 等. 金属学报, 2017, 53(11), 1418.
[1] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[2] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[3] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[4] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[5] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[6] 王星星,彭 进,崔大田,薛 鹏,李 红,胡安明,孙国元. 银基钎料在制造业中的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1477-1485.
[7] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[8] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[9] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[10] 苏剑, 张辉, 滕杰, 蒋福林, 孙轶山. 冷轧前热处理对6016-T4P铝合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed