Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 316-321    https://doi.org/10.11896/j.issn.1005-023X.2018.02.031
  物理   计算模拟 |材料 |
多尺度模拟研究纳米凸体几何形貌对初始塑性的影响
周思源,金剑锋,王璐,曹敬祎,杨培军
东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室,沈阳 110819
Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities
Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG
Key Laboratory for Anisotropy and Texture of Materials of Education Department, School of Materials Science and Engineering,Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 3902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

研究金属表面微凸体的力学行为对深入理解摩擦、磨损和设计微纳米机电器件有很大帮助。采用准连续方法探索了纳米压痕作用在薄膜(001)表面的纳米微凸体几何形貌对铝和铜薄膜初始塑性的影响规律。结果显示,相较于平坦表面,微凸体的存在显著地降低了薄膜的屈服应力。矩形微凸体横纵比对屈服应力的影响不大。随着底角α的增大,梯形微凸体的屈服应力呈现降低的趋势,尤其是α>54.7°。同时,在纳米尺度限制全位错形成的条件下,铝中可能容易形成孪晶结构。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周思源
金剑锋
王璐
曹敬祎
杨培军
关键词:  多尺度准连续方法  初始塑性  表面微凸体  几何效应  形变孪晶    
Abstract: 

To understand mechanical behaviors of the asperities on a metal rough surface is helpful for understanding the friction, wear property of materials and designing micro/nano electromechanical devices. In the study, multiscale quasicontinuum (QC) method was used to explore geometric effect on onset plasticity of nano-scale asperities on aluminum and copper thin films during nanoindentation on the (001) surface. The results show that existing asperities significantly reduce the yield stress of thin film, compared with the stress of the flat film. For a rectangular asperity, the aspect ratio (width/height) affects yield stress of both films without much change. For a trapezoidal asperity, the yield stress decreases with the base angle (α), especially when the α is over 54.7°. It is also found that deformation twinning can be formed in the aluminum film under the condition of constraining full dislocation formation at nanoscale.

Key words:  multiscale quasicontinuum method    onset plasticity    surface asperity    geometric effect    deformation twinning
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51301035;U1302272);中央财政基本科研业务费(N151004004;L1502028;N150502002);辽宁省教育厅优秀人才计划(LJQ2015037)
引用本文:    
周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities. Materials Reports, 2018, 32(2): 316-321.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.031  或          http://www.mater-rep.com/CN/Y2018/V32/I2/316
图1  模拟表面纳米微凸体在纳米压痕作用于薄膜(001)表面的力学行为时,准连续模型的设置,其中D和D'是梯形微凸体的上底和下底,H是梯形微凸体的高度,α是梯形微凸体的底角
图2  平坦表面、含梯形微凸体(D=20 ?,H=20 ?,α=45 ?)的表面、含矩形微凸体(D=20 ?,H=20 ?,α=90°)的表面,对应纳米压痕实验下的压痕应力-位移曲线及屈服点对应的位错形貌
图3  (a)采用不同横纵比(AR)的矩形微凸体所对应的表面压痕屈服应力的变化规律;(b)不同横纵比下矩形微凸体中屈服点对应的位错滑移系的示意图;(c)、(d)、(e)分别为(a)中铝单晶中微凸体H=40 ?,AR=0.5、1.0、1.8时屈服点对应的位错结构;(f)为(a)中铜微凸体H=40 ?,AR=1.8时屈服点对应的位错结构
图4  (a)铝和铜表面的梯形微凸体,压痕屈服应力随底角α的变化趋势(D=40 ?,AR=1.0),及屈服点对应的位错形貌:(b)铝微凸体(α=14°),(c)铝微凸体(α=55°),(d)铝微凸体(α=81°)
图5  比较单位面积下,铝和铜梯形微凸体(D=40 ?,AR=1.0),其未加载时平衡势能相较于平坦表面的势能差随底角变化的趋势
图6  铝和铜矩形微凸体(AR=1.8,H=40 ?):(a)对应的压痕应力-位移曲线和(b)力降时的位错形貌
图7  铝梯形微凸体(D=80 ?,H=40 ?,α=14°)对应的压痕应力-位移曲线和力降点A处的形变孪晶形貌图
1 Majumdar A A, Bhushan B . Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. Journal of Tribology, 1990,112(2):205.
2 Szlufarska L, Chandross M, Carpick R W , et al. Recent advances in single-asperity nanotribology[J]. Journal of Physics D:Applied Phy-sics, 2008,41(12):123001.
3 Gadelmawla E S, Koura M M, Maksoud T M A , et al. Roughness parameters[J]. Journal of Materials Processing Technology, 2002,123(1):133.
4 Zhao Y, Maietta D M, Chang L , et al. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000,122(1):86.
5 Mihailidis A, Bakolas V, Drivakos N , et al. Subsurface stress field of a dry line contact[J]. Wear, 2001,249(7):546.
6 Gao Y F, Bower A F, Kim K S , et al. The behavior of an elastic-perfectly plastic sinusoidal surface under contact loading[J]. Wear, 2006,261(2):145.
7 Sun F, Giessen E V D, Nicola L , et al. Plastic flattening of a sinusoidal metal surface: A discrete dislocation plasticity study[J]. Wear, 2012,296(1-2):672.
8 Liu M, Proudhon H . Finite element analysis of frictionless contact between a sinusoidal asperity and a rigid plane: Elastic and initially plastic deformations[J]. Mechanics of Materials, 2014,77:125.
9 Persson B . Theory of rubber friction and contact mechanics[J]. Journal of Chemical Physics, 2001,115(8):3840.
10 Vorobyev A Y, Makin V S, Guo C , et al. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics, 2007,101(3):034903.
11 Rubio G, Agra? N, Vieira S , et al. Atomic-sized metallic contacts: Mechanical properties and electronic transport[J]. Physical Review Letters, 1996,76(13):2302.
12 Shibutani Y, Koyama A . Surface roughness effects on the displacement bursts observed in nanoindentation[J]. Journal of Materials Research, 2004,19(1):183.
13 Nicola L, Giessen E D, Sun F W , et al. Effect of plastic flattening on the shearing response of metal asperities: A dislocation dynamics analysis[J]. Journal of Applied Mechanics, 2015,82(7):071009.
14 Cha P R, Srolovitz D J, Vanderlick T K , et al. Molecular dynamics simulation of single asperity contact[J]. Acta Materialia, 2004,52(13):3983.
15 Miller R E, Tadmor E B . The quasicontinuum method: Overview, applications and current directions[J]. Journal of Computer-Aided Materials Design, 2002,9(3):203.
16 Jin J, Shevlin S A, Guo Z X , et al. Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface[J]. Acta Materialia, 2008,56(16):4358.
17 Li J W, Jiang W G . Predictions of nanohardness and elastic modulus of thin film material with the quasicontinuum method[J]. Acta Metallurgica Sinica, 2007,43(8):851(in Chinese).
18 黎军顽, 江五贵 . 基于准连续介质法预测薄膜材料纳米硬度和弹性模量[J]. 金属学报, 2007,43(8):851.
19 R?dig T, Sch?necker A, Gerlach G , et al. A survey on piezoelectric ceramics for generator applications[J]. Journal of the American Ceramic Society, 2010,93(4):901.
20 Qi Y, Jafferis N T, Jr L K , et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion[J]. Nano Letters, 2010,10(2):524.
21 Madhu B, Sharath S, Simon R , et al. Nanoscale characterization of energy generation from piezoelectric thin films[J]. Advanced Functional Materials, 2011,21(12):2251.
22 Wang Z L, Song J . Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006,312(5771):242.
23 Kim S H, Asay D B, Dugger M T , et al. Nanotribology and MEMS[J]. Nano Today, 2007,2(5):22.
24 Nili H, Cheng G, Venkatesh T A , et al. Correlation between nanomechanical and piezoelectric properties of thin films: An experimental and finite element study[J]. Materials Letters, 2013,90(1):148.
25 4 Lu Huaibao, Ni Yushan . Effect of surface step on nanoindentation of thin films by multiscale analysis[J]. Thin Solid Films, 2012,520(15):4934.
26 5 Tadmore E B, Ortiz M, Philips R , et al. Quasicontinuum analysis of defects in solids[J]. Philosophical Magazine A, 1996,73(6):1529.
27 6 Shenoy V B, Miller R, Tadmor E B , et al. An adaptive finite element approach to atomic-scale mechanics—The quasicontinuum method[J]. Journal of the Mechanics and Physics of Solids, 1999,47(3):611.
28 7 Foiles S M, Baskes M I, Daw M S , et al. Embedded atom method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloy[J]. Physical Review B Condensed Matter, 1986,33(12):7983.
29 8 Zimmerman J A, Gao H, Abraham F F , et al. Generalized stacking fault energies for embedded atom FCC metals[J]. Modelling and Simulation in Materials Science and Engineering, 2000,8(2):103.
30 9 Horstemeyer M F, Baskes M I, Plimpton S J , et al. Computational nanoscale plasticity simulations using embedded atom potentials[J]. Theoretical and Applied Fracture Mechanics, 2001,37(1):49.
31 0 Kiely J D, Houston J E . Nanomechanical properties of Au (111), (001), and (110) surfaces[J]. Physical Review B, 1998,57(19):12588.
32 Carrasco E, Gonzalez M A, Rojo J M , et al. Analysis at atomic level of dislocation emission and motion around nanoindentations in gold[J]. Surface Science, 2004,572(2):467.
33 Filleter T, Bennewitz R . Nanometre-scale plasticity of Cu(100)[J]. Nanotechnology, 2007,18(4):044004.
34 3 Zimmerman J A, Kelchner C L, Klein P A , et al. Surface step effects on nanoindentation[J]. Physical Review Letters, 2001,87(16):165507.
35 4 Kiely J D, Hwang R Q, Houston J E , et al. Effect of surface steps on the plastic threshold in nanoindentation[J]. Physical Review Letters, 1998,81(20):4424.
36 5 Tsuru T, Shibutani Y . Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu[J]. Physical Review B, 2007,75(3):035415.
37 6 Roundy D, Cohen M L, Krenn C R , et al. Ideal shear strengths of fcc aluminum and copper[J]. Physical Review Letters, 1999,82(13):2713.
38 37 Rodriguez de la Fuente O, Zimmerman J A, Gonzalez M A , et al. Dislocation emission around nanoindentations on a (001) FCC metal surface studied by scanning tunneling microscopy and atomistic simulation[J]. Physical Review Letters, 2002,88(3):036101.
39 8 Shan Z W, Mishra R K, Syed Asif S A , et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2008,7(2):115.
40 39 余永宁. 材料科学基础[M]. 第2版.北京: 高等教育出版社, 2012: 548.
41 0 Kibey S, Liu J B, Johnson D D , et al. Predicting twinning stress in Fcc metals: Linking twin-energy pathways to twin nucleation[J]. Acta Materialia, 2007,55(20):6843.
42 Guo L J . Nanoimprint lithography: Methods and material requirements[J]. Advanced Materials, 2007,19(4):495.
[1] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed