Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3332-3337    https://doi.org/10.11896/j.issn.1005-023X.2018.19.007
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
柔性热电发电器的关键工艺及其展望
义志涛1,2,3,何国强1,2,3
1 广西大学资源环境与材料学院,南宁 530004;
2 广西大学有色金属及特色材料加工重点实验室,南宁 530004;
3 广西大学可再生能源材料协同创新中心,南宁 530004
Key Techniques and Prospects of Flexible Thermoelectric Generator
YI Zhitao1,2,3,HE Guoqiang1,2,3
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004;
2 Key Laboratory of Processingfor Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004;
3 Collaborative InnovationCenter of Sustainable Energy Materials, Guangxi University, Nanning 530004
下载:  全 文 ( PDF ) ( 2086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电发电器是固态能量收集器,以可靠和可再生的方式将热能转换成电能。过去几年的研究表明,人体的热量可以很好地被柔性热电发电器转换为电能并加以利用。与用于可穿戴设备的其他传统发电器相比,柔性热电发电器可利用低品位的热能发电且环境友好。柔性热电发电器将有可能为任何无线传感器节点提供足够的能量(通常功率要求小于毫瓦级)。本文综述了热电发电器的概况,重点介绍了制造柔性热电发电器的关键工艺,讨论了热电发电器的基本原理、效率、应用以及存在的一些问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
义志涛
何国强
关键词:  柔性热电发电器  热电效率  品质因数    
Abstract: Thermoelectric generators are solid state energy collectors which can convert thermal energy into electrical energy in a reliable and renewable manner. In the past few years, it has been considered that the heat of human body could be effectively converted to electrical energy by flexible thermoelectric generators. Moreover, flexible thermoelectric generators are able to use low-grade thermal energy to generate electricity and they are environmental friendly compared to other conventional generators applied in many wearable devices. Besides, it is worth mentioning that flexible thermoelectric generator is potential to generate sufficient energy for any wireless sensor nodes (usually the power requirements is less than milliwatt). In this article, the general research situation of thermoelectric generators is reviewed, and several key techniques for flexible thermoelectric generator manufacturing are introduced with emphasis. The basic principle, efficiency, applications and existing problems of thermoelectric power generator are also discussed.
Key words:  flexible thermoelectric generator    thermoelectric efficiency    quality factor
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TB34  
作者简介:  义志涛:男,1994年生,硕士研究生,研究方向为新能源材料 E-mail:13295606207@163.com ;何国强:男,1981年生,教授,硕士研究生导师,研究方向为新能源材料领域 E-mail:gqhe@gxu.edu.cn;
引用本文:    
义志涛, 何国强. 柔性热电发电器的关键工艺及其展望[J]. 材料导报, 2018, 32(19): 3332-3337.
YI Zhitao, HE Guoqiang. Key Techniques and Prospects of Flexible Thermoelectric Generator. Materials Reports, 2018, 32(19): 3332-3337.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.007  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3332
1 Bhatnagar V, Owende P. Energy harvesting for assistive and mobile applications[J].Energy Science & Engineering,2015,3(3):153.
2 Du L, Shi G, Zhao J. Review of micro magnetic generator[J].Sensors & Transducers,2014,176(8):114.
3 Arnold D P. Review of microscale magnetic power generation[J].IEEE Transactions on Magnetics,2007,43:40.
4 Gould C A, Shammas N Y A, Grainger S, et al. A comprehensive review of thermoelectric technology, micro-electrical and power gene-ration properties[C]∥26th International Conference on Microelectronics (MIEL 2008). Nissan,2008:329.
5 Ahiska R, Mamur H. A review: Thermoelectric generators in renewable energy[J].International Journal of Renewable Energy Research,2014,4:128.
6 Qu W, Ploetner M, Fischer W J. Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems[J].Journal of Micromechanics and Microengineering,2001,11(2):146.
7 He W, Zhang G, Zhang X, et al. Recent development and application of thermoelectric generator and cooler[J].Applied Energy,2015,143:1.
8 Mahalakshmi P, Kalaiselvi S. Energy harvesting from human body using thermoelectric generator[J].International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering,2014,3(5):48.
9 Stark I. Converting body heat into reliable energy for powering phy-siological wireless sensors[C]∥Proceedings of the 2nd Conference on Wireless Health. New York,2011:31.
10 Champier D. Thermoelectric generators: A review of applications[J].Energy Conversion and Management,2017,140:167.
11 Settaluri K T, Lo H, Ram R J. Thin thermoelectric generator system for body energy harvesting[J].Journal of Electronic Materials 2012,41:984.
12 Elsheikh M H, Shnawah D A, Sabri M F M, et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance[J].Renewable and Sustainable Energy Reviews,2014,30:337.
13 Hasebe M, Kamikawa Y, Meiarashi S. Thermoelectric generators using solar thermal energy in heated road pavement[C]∥25th International Conference on Thermoelectrics. Vienna, 2006:697.
14 Yang Y, Wei X J, Liu J. Suitability of a thermoelectric power gene-rator for implantable medical electronic devices[J].Journal of Physics D: Applied Physics,2007,40(18):57.
15 Itoigawa K, Ueno H, Shiozaki M, et al. Fabrication of flexible thermopile generator[J].Journal of Micromechanics and Microenginee-ring,2005,15(9):233.
16 Takashiri M, Shirakawa T, Miyazaki K, et al. Fabrication and cha-racterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method[J].Sensors and Actuators A: Physical,2007,138(2):329.
17 Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator[J].Journal of Power Sources,2008,175(2):909.
18 Schwyter E, Glatz W, Durrer L, et al. Flexible micro thermoelectric generator based on electroplated Bi2+xTe3-x[C]∥Design, Test, Integration and Packaging of MEMS/MOEMS.Nice,2008:46.
19 Navone C, Soulier M, Plissonnier M, et al. Development of (Bi, Sb)2 (Te, Se)3 based thermoelectric modules by a screen-printing process[J].Journal of Electronic Materials,2010,39(9):1755.
20 Suemori K, Hoshino S, Kamata T. Flexible and lightweight ther-moelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate[J].Applied Physics Letters,2013,103(15):193.
21 Francioso L, De Pascali C, Farella I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors[J].Journal of Power Sources,2011,196(6):3239.
22 Sevilla G A T, Inayat S B, Rojas J P, et al. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)[J].Small,2013,9(23):391.
23 Fan P, Zheng Z, Li Y, et al. Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials[J].Applied Physics Letters,2015,106(7):703.
24 Delaizir G, Monnier J, Soulier M, et al. A new generation of high performance large-scale and flexible thermo-generators based on (Bi, Sb)2 (Te, Se)3 nano-powders using the spark plasma sintering technique[J].Sensors and Actuators A: Physical,2012,174:115.
25 Yang Y, Lin Z H, Hou T, et al. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors[J].Nano Research,2012,20(3):1.
26 Im H, Moon H G, Lee J S, et al. Flexible thermocells for utilization of body heat[J].Nano Research,2014,7(4):1.
27 Leblanc S, Yee S K, Scullin M L, et al. Material and manufacturing cost considerations for thermoelectrics[J].Renewable and Sustainable Energy Reviews,2014,32:313.
28 Wang Z, Leonov V, Fiorini P, et al. Micromachined thermopiles for energy scavenging on human body[C]∥Solid-State Sensors, Actuators and Microsystems Conference. Lyon,2007:911.
29 Rowe D M. Thermoelectrics handbook: Macro to nano[M].Boca Raton:CRC Press,2005.
[1] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[2] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed