Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2366-2369    https://doi.org/10.11896/j.issn.1005-023X.2018.14.008
  无机非金属及其复合材料 |
基于单负超材料的高品质因数亚波长谐振腔
冯团辉, 李优
许昌学院电气信息工程学院,许昌 461000
High Q-factor Subwavelength Cavity Resonator Based on Single-Negative Metamaterials
FENG Tuanhui, LI You
School of Electrical and Information Engineering, Xuchang University, Xuchang 461000
下载:  全 文 ( PDF ) ( 2483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先对由两种单负超材料组成的异质结的传输特性进行了研究,发现该异质结具有谐振腔功能和亚波长特性。然后对该亚波长谐振腔品质因数的增强进行了研究,发现当在由两种单负超材料组成的异质结界面处引入类电磁感应透明超材料原胞时,谐振腔的品质因数得到大幅增强,从而获得了一种具有高品质因数特点的亚波长谐振腔。该谐振腔将有助于微波及更高频段元器件的小型化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯团辉
李优
关键词:  超材料  谐振腔  亚波长  高品质因数    
Abstract: Firstly, the transmission properties of the heterostructure constructed by two kinds of single-negative metamaterials were investigated and the results showed that the single-negative metamaterial heterostructure can play the role of the subwavelength cavity. In addition, the enhancement of the Q-factor of the subwavelength cavity was also studied and it was found that the Q-factor of the subwavelength cavity can be greatly increased when the electromagnetically-induced-transparency-like metamaterial unit is loa-ded at the interface of the single-negative metamaterial heterostructure. Therefore, a high Q-factor subwavelength cavity was realized based on the single-negative metamaterials. The cavity may be useful for miniaturization of devices and elements in microwave or higher frequency range.
Key words:  metamaterials    cavity    subwavelength    high Q-factor
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TB34  
  O441  
基金资助: 国家自然科学基金(U1504110);河南省自然科学基金(182300410199);河南省科技攻关计划项目(182102210509)
作者简介:  冯团辉:男,1979年生,博士,副教授,主要研究方向为超材料 E-mail:tuanhuifeng@xcu.edu.cn
引用本文:    
冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
FENG Tuanhui, LI You. High Q-factor Subwavelength Cavity Resonator Based on Single-Negative Metamaterials. Materials Reports, 2018, 32(14): 2366-2369.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.008  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2366
1 Zhou L, Li H Q, Wei Z Y, et al. Directive emissions from subwavelength metamaterial-based cavities[J]. Applied Physics Letters,2005,86(10):101101.
2 Ourir A, Lustrac A, Lourtioz J. All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas[J]. Applied Physics Letters,2006,88(8):084103.
3 Caiazzo M, Maci S, Engheta N. A metamaterial surface for compact cavity resonators[J]. IEEE Antennas and Wireless Propagation Letters,2004,3:261.
4 Engheta N. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability[J]. IEEE Antennas and Wireless Propagation Letters,2002,1:10.
5 Kim M W, Chen Y H, Moore J, et al. Subwavelength surface plasmon optical cavity—Scaling, amplification, and coherence[J]. IEEE Journal of Selected Topics in Quantum Electronics,2009,15(5):1521.
6 Liao S W, Xu J H, Wan F, et al. Left-handed/right-handed transmission line subwavelength cavity resonators[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:80.
7 Kwon S. Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors[J]. IEEE Photonics Journal,2013,5(1):4800107.
8 Seol K H, Lee K G, Song S H. A deep subwavelength cavity formed by total external reflection of surface plasmon polariton[J]. Journal of Applied Physics,2015,117(17):173104.
9 Wan M G, Gu P, Liu W Y, et al. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities[J]. Applied Physics Letters,2017,110(3):031103.
10 Vanhille K J, Fontaine D L, Nichols C, et al. Quasi-planar high-Q millimeter-wave resonators[J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(6):2439.
11 Pan B, Li Y, Tentzeris M M, et al. A high-Q millimeter-wave air-lifted cavity resonator on lossy substrates[J]. IEEE Microwave and Wireless Components Letters,2007,17(8):571.
12 Dhakal P, Ciovati G, Kneisel P, et al. Enhancement in quality factor of SRF niobium cavities by material diffusion[J]. IEEE Tran-sactions on Applied Superconductivity,2015,25(3):3500104.
13 Welna K, Debnath K, Krauss T F, et al. High-Q photonic crystal cavities realized using deep ultraviolet lithography[J]. Electronics Letters,2015,51(16):1277.
14 Sun Y, Jiang H T, Yamg Y P, et al. Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dyna-mic evolution[J]. Physical Review B Condensed Matter,2011,83(19):195140.
15 Grbic A, Eleftheriades G V. Experimental verification of backward-wave radiation from a negative refractive index metamaterial[J]. Journal of Applied Physics,2002,92(10):5930.
16 Alù A, Engheta N. Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency[J]. IEEE Tran-sactions on Antennas & Propagation,2003,51(10):2558.
17 Caloz C, Itoh T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line[J]. IEEE Transactions on Antennas & Propagation,2004,52(5):1159.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[3] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[4] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[5] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[6] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[7] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
[8] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[9] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed