Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 363-367    https://doi.org/10.11896/cldb.201902030
  高分子与聚合物基复合材料 |
新型全介质谐振表面二元超材料吸波体
王强1,2, 王岩1,2, 黄小忠1,2, 熊益军1,2, 张芬1,3
1 中南大学航空航天学院,长沙 410012
2 中南大学新型特种纤维及其复合材料湖南省重点实验室,长沙 410083
3 中南大学物理与电子学院,长沙 430100
A Novel Binary Metamaterial Absorber Using All-dielectric Resonance Surface
WANG Qiang1,2, WANG Yan1,2, HUANG Xiaozhong1,2, XIONG Yijun1,2, ZHANG Fen1,3
1 School of Aeronautics and Astronautics, Central South University, Changsha 410012
2 Hunan Key Laboratory of Advanced Fibers and Composites, Central South University, Changsha 410083
3 School of Physics and Electronics, Central South University, Changsha 430100
下载:  全 文 ( PDF ) ( 4380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于干涉理论,利用低介电材料全介质谐振表面(All-dielectric resonance surface, ADRS)设计并制备了一种新型二元结构超材料吸波体(Binary-structural metamaterial absorber, BMA)。优化后的BMA分别在13.332 GHz、16.722 GHz和17.34 GHz处有强吸收。通过阻抗分析、能量损耗分布及场分析的方法解释了BMA的谐振与吸波机理,并研究了ADRS结构参数对吸波性能的影响。分析表明,BMA的三频谐振来源于ADRS的电谐振响应;ADRS的结构决定谐振峰处磁场分布,进而影响吸波性能。仿真结果与实测结果吻合较好。本工作提出的采用低介电材料ADRS代替传统金属谐振表面及难以制备的高介电常数ADRS,极大地简化了超材料吸波体的设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王强
王岩
黄小忠
熊益军
张芬
关键词:  二元超材料吸波体  低介电常数  全介质谐振表面  多频带    
Abstract: In this paper, based on the interference theory, the novel binary-structural metamaterial absorber (BMA) using single low-permittivity all-dielectric resonance surface (ADRS) was designed and fabricated. The optimized BMA exhibited three strong absorption peaks at 13.332 GHz,16.722 GHz, and 17.34 GHz, respectively. The resonance and absorption mechanisms of the BMA were explained via relative impedance analysis, distributions of power loss density and field analysis. Meanwhile, the influences of absorption properties on structure parameters of ADRS were studied. It can be discerned that the three resonance peaks can be owed to electric-resonance of ADRS, and the magnetic-field distributions at resonance frequencies were determined by the ADRS structure. The simulated results were well agreed with the measured one. The current design that employed the low-permittivity ADRS instead of conventional metal resonance surface or high-permittivity ADRS, dramatically simplified metamaterial designs.
Key words:  binary metamaterial absorber    low-permittivity    all-dielectric resonance surface    multiband
                    发布日期:  2019-01-31
ZTFLH:  TB34  
  TB383  
基金资助: 国防科学技术创新项目(1716313ZT01002601;1716313ZT009052001);湖南省科技计划项目(2015TP1007);中南大学特聘副教授科研启动基金(502045002)
作者简介:  王强,2018年6月毕业于中南大学航空航天学院,获得学术硕士学位。现就读于西安交通大学电子与信息工程学院,攻读博士学位。主要从事超材料吸波体的结构设计研究,功能性纳米薄膜器件及其相关应用研究。黄小忠,中南大学航空航天学院教授,湖南省普通高校电子材料学科带头人,主要从事高性能纤维材料、隐身材料、功能-结构一体化复合电磁材料与器件研究。huangxzh@csu.edu.cn
引用本文:    
王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
WANG Qiang, WANG Yan, HUANG Xiaozhong, XIONG Yijun, ZHANG Fen. A Novel Binary Metamaterial Absorber Using All-dielectric Resonance Surface. Materials Reports, 2019, 33(2): 363-367.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902030  或          http://www.mater-rep.com/CN/Y2019/V33/I2/363
1 Ming S L, Lv X. Progress In Electromagnetics Research,2008,83,133.
2 Garcia-Garcia J, Bonache J, Gil I, et al. IEEE Transactions on Microwave Theory & Techniques,2006,54(6),2628.
3 Zhai T, Chen S, Zhou Y, et al. Applied Physics B,2011,104(4),935.
4 Costa F, Genovesi S, Monorchio A. IEEE Transactions on Microwave Theory & Techniques,2013,61,146.
5 Xu H X, Wang G M, Qi M Q, et al. Physical Review B,2012,86,3368.
6 Ye Q, Liu Y, Lin H, et al. Applied Physics A,2012,107,155.
7 Islam S, Faruque M, Islam M. Materials,2014,7,4994.
8 Huang L, Chen H. Progress In Electromagnetics Research,2011,113,103.
9 Park J W, Tuong P V, Rhee J Y, et al. Optics Express,2013,21,9691.
10 Hui Y C, Wang C Q, Huang X Z. Acta Physica Sinica,2015,64(21),218102(in Chinese).
惠忆聪,王春齐,黄小忠.物理学报,2015,64(21),218102.
11 Peng L, Ran L, Chen H, et al. Physical Review Letters,2007,98(15),157403.
12 Yang Y Y, Qu S B, Wang J F, et al. Acta Physica Sinica,2011,60(7),074201(in Chinese).
杨一鸣,屈绍波,王甲富,等.物理学报,2011,60(7),074201.
13 Wang J, Xu Z, Yu Z, et al. Journal of Applied Physics,2011,109(8),509.
14 Zhao Q, Kang L, Du B, et al. Physical Review Letters,2008,101(2),027402.
15 Li L Y, Wang J, Wang J F, et al. Applied Physics Letters,2015,106,212904.
16 Liu X, Lan C, Bi K, et al. Applied Physics Letters,2016,109(6),7181.
17 Chen J F, Wang G D, Chen Z Q, et al. In: Conference Record of the Progress in Electromagnetics Research Symposium. Guangzhou,2014, pp.541.
18 Zhang F L, Feng S Q, Qiu K P, et al. Applied Physics Letters,2015,106,207402.
19 Liu X, Zhao Q, Lan C, et al. Applied Physics Letters,2013,103(3),4773-R.
20 Liu X, Bi K, Li B, et al. Optics Express,2016,24(18),20454.
21 Sun J, Liu L, Dong G, et al. Optics Express,2011,19(22),21155.
22 Wanghuang T L, Chen W J, Huang Y J, et al. AIP Advances,2013,3,102118.
23 Hu F W, Cheng J J. Industrial Technology Innovation,2017(4),15(in Chinese).
胡福文,程佳剑.工业技术创新,2017(4),15.
24 Tian X Y, Yin M, Li D C. Journal of Mechanical Engineering,2015(7),12(in Chinese).
田小永,殷鸣,李涤尘.机械工程学报,2015(7),12.
25 Smith D R, Vier D C, Koschny T, et al. Physical Review E,2005,71,036617.
26 Du B, Wang J, Xu Z, et al. Journal of Applied Physics,2014,115(23),4773.
27 Wang J, Xu Z, Yu Z, et al. Journal of Applied Physics,2011,109(8),509.
28 Koschny T, Marko P, Economou E N, et al. Physical Review B,2004,71(24),245105.
29 Yu F, Wang J, Wang J F, et al. Applied Physics Letters,2015, 107,211906.
30 Wang Q, Tang X Z, Zhou D, et al. IEEE Antennas Wireless Propagation Letters, 2017,16,3200.
31 King R J. Journal of Scientific Instruments,1966,43(43),617.
32 Wang Q, Wang Y, Tang X Z, et al. Journal of Advanced Dielectrics,2018,8,1850021.
33 Wang Q, Zhang F, Xiong Y J, et al. Journal of Electronic Materials,2018, DOI:10.1007/s11664-018-6796-2.
34 Michael I M, Larry D T. Photopolarimetry in Remote Sensing,2004,161,1.
35 Liu S H, Liu J M, Dong X L, et al. Electromagnetic shielding and absorbing materials, Chemical Industry Press, China,2013(in Chinese).
刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料.化学工业出版社,2013.
[1] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed