Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 114-122    https://doi.org/10.11896/j.issn.1005-023X.2017.021.016
  新材料新技术 |
基于集总元件的超材料吸波器研究进展*
宋健, 李敏华, 董建峰
宁波大学信息科学与工程学院,宁波 315211
Progress in Metamaterial Absorber Based on Lumped Elements
SONG Jian, LI Minhua, DONG Jianfeng
College of Information Science and Engineering,Ningbo University,Ningbo 315211
下载:  全 文 ( PDF ) ( 3645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于集总元件的亚波长电磁超材料吸波器,因其厚度薄、吸波率强、谐振频率(或带宽)可调谐性和便于集成等优点越来越受到人们的关注。介绍了当前国内外基于集总元件的超材料吸波器的最新研究进展,并根据集总元件的种类对其进行分类,阐述了不同的吸波机理。这种可重构超介质吸波材料在能量搜集、信号源探测、(5G通信)电磁兼容、MINO天线、舰船隐身等诸多前沿领域有广阔的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋健
李敏华
董建峰
关键词:  超材料  吸波器  集总元件  集总电阻  集总电容  二极管    
Abstract: Lumped elements-loaded electromagnetic metamaterial absorbers constructed by sub-wavelength structures, have aroused a surge of interest because of their unique advantages such as thin thickness, strong absorption, resonant frequency(or bandwidth) tunability and easy integration. This paper introduces the latest research progress of metamaterials absorber based on lumped elements at home and abroad, and classifies them according to the types of lumped components, together with different absorbing mechanisms. This kind of reconfigurable metamaterial absorbers have a wide application value in energy harvesting, signal source detection, (5G communication) electromagnetic compatibility, MINO antenna, ship stealth and so forth.
Key words:  metamaterials    absorber    lumped element    lumped resistor    lumped capacitor    diode    lumped inductor
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(61501269);浙江省自然科学基金(LQ16F010002)
通讯作者:  李敏华,男,1985年生,博士,讲师,从事人工电磁媒质及其在微波器件上的应用研究 E-mail:liminhua@nbu.edu.cn董建峰:男,1964年生,博士,教授,博士研究生导师,从事负折射率材料、手征介质波导等方面的研究 E-mail:dongjianfeng@nbu.edu.cn   
作者简介:  宋健:男,1990年生,硕士研究生,研究方向为超材料的吸波特性 E-mail:790917990@qq.com
引用本文:    
宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
SONG Jian, LI Minhua, DONG Jianfeng. Progress in Metamaterial Absorber Based on Lumped Elements. Materials Reports, 2017, 31(21): 114-122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.016  或          http://www.mater-rep.com/CN/Y2017/V31/I21/114
1 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77.
2 Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 1996,76(25):4773.
3 Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory Techniques, 1999,47(11):2075.
4 Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000,85(18):3966.
5 Rosenblatt G, Orenstein M. Perfect lensing by a single interface: Defying loss and bandwidth limitations of metamaterials[J]. Phys Rev Lett, 2015, 115(19):195504.
6 Bhardwaj A, Ramakrishna S A. Focusing properties of a spherical perfect lens with eccentric deformations[J]. J Optical Soc Am B, 2016, 33(9):2000.
7 Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366.
8 Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nat Comm, 2010, 1(3):21.
9 Yu X, Gao X, Qiao W, et al. Broadband tunable polarization converter realized by graphene-based metamaterial[J]. IEEE Photonics Technol Lett, 2016, 28(21):2399.
10Tassin P. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting[J]. Appl Phys Lett, 2017, 110(8):143904.
11Karaaslan M, Bagmancl M, Unal E, et al. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications[J]. Optics Comm, 2017, 392:31.
12Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20):207402.
13Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Appl Phys Lett, 2009, 95(24):207402.
14Li M, Yang H L, Hou X W, et al. Perfect metamaterial absorber with dual bands[J]. Progress Electromagn Res, 2010,108:37.
15Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. J Phys D: Appl Phys, 2010,43(22):225102.
16Li H, Ma H F, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J].Optics Express, 2011, 19(10):9401.
17Xu H X, Wang G M, Qi M Q, et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber[J]. Phys Rev B, 2012, 86(20):3368.
18Dickie R, Cahill R, Gamble H S, et al. Spatial demultiplexing in the submillimeter wave band using multilayer free-standing frequency selective surfaces[J]. IEEE Transactions Antennas Propagation, 2005, 53(6):1904.
19Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber[J]. Appl Phys Lett, 2011, 100(10):103506.
20Mias C, Yap J H. A Varactor-tunable high impedance surface with a resistive-lumped-element biasing grid[J]. IEEE Transactions Antennas Propagation, 2007, 55(7):1955.
21Gu C, Qu S B, Pei Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chin Phys Lett,2010,11:185.
22Cheng Y Z, Wang Y, Nie Y, et al. Design, fabrication and mea-surement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. J Appl Phys, 2012, 111(4):509.
23Zhu B, Feng Y, Zhao J, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Appl Phys Lett, 2010, 97(5):051906.
24Luo Z, Long J, Chen X, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Appl Phys Lett, 2016, 109(7):1516.
25Liu L G, Li Y Q, Meng Q Z, et al. Design of an invisible radome by frequency selective surfaces loaded with lumped resistors[J]. Chin Phys Lett, 2013, 30(6):64101.
26Zhao M, Yu X, Wang Q, et al. Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm[J]. IEEE Antennas Wireless Propagation Lett, 2015, 14:1467.
27Ghosh S, Bhattacharyya S, Srivastava K V. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber[J]. IET Microwaves Antennas Propagation, 2016, 10(8):850.
28Yang G H, Liu X X, Lv Y L, et al. Broadband polarization-insensitive absorber based on gradient structure metamaterial[J]. J Appl Phys, 2014, 115(17):1324.
29Lee H M, Lee H S. Resonant mode behavior of lumped-resistor-loaded electric-inductive-capacitive resonator and its absorber application[J]. AIP Adv, 2013, 3(5):041109-R.
30Zhang D, Cao X Y, Zhang W Q, et al. Design and application of wave-absorbing split ring resonator[J]. J Microwaves,2016(s1):67(in Chinese).
张迪, 曹祥玉, 张武岐, 等. 吸波型开口谐振环设计与应用研究[J]. 微波学报, 2016(s1):67.
31Li S, Gao J, Cao X, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. J Appl Phys, 2014, 116(4):207402.
32Munaga P, Ghosh S, Bhattacharyya S, et al. A fractal-based compact broadband polarization insensitive metamaterial absorber using lumped resistors[J]. Microwave Optical Technol Lett, 2016,58(2):343.
33陈强, 陈亮, 白佳俊, 等. 一种宽带小型化超材料吸波体设计[C] ∥2015年全国微波毫米波会议论文集. 合肥, 2015: 1579.
34Khuyen B X, Tung B S, Yoo Y J, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band[J]. Sci Rep, 2017, 7:45151.
35Yoo Y J, Zheng H Y, Kim Y J, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell[J]. Appl Phys Lett, 2014, 105(4):1353.
36Liu L Y, Zhang Z J, L L X. Research on broadband metamaterial absorber based on lumped resistance[J]. J Microwaves, 2016,32(5):50(in Chinese).
刘凌云, 张政军, 刘力鑫. 基于集总电阻的宽频带超材料吸波器研究[J]. 微波学报, 2016,32(5):50.
37Langley R J, Parker E A. Equivalent circuit model for arrays of square loops[J]. Electron Lett, 1982,18(7):294.
38Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas Propagation Magazine, 2012,54(4):35.
39Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impe-dance surfaces[J]. IEEE Transactions Antennas Propagation, 2010,58(5):1551.
40Zhao J, Cheng Y. Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors[J]. J Electron Mater, 2016, 45(10):5033.
41Shi Y, Li Y C, Hao T, et al. A design of ultra-broadband metamaterial absorber[J]. Waves Random Complex Media, 2017,27(2):381.
42Gu S, Barrett J P, Hand T H, et al. A broadband low-reflection metamaterial absorber[J]. J Appl Phys, 2010, 108(6):064913.
43Gu C, Qu S B, Pei Z B, et al. Design of a wide-band metamaterial absorber based on loaded magnetic resonators[J]. Acta Phys Sin, 2011, 60(8):656(in Chinese).
顾超, 屈绍波, 裴志斌,等. 基于磁谐振器加载的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8):656.
44Chen Q, Jiang J J, Xu X X, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface[J]. J Electromagn Waves Appl, 2012,26(16):2102.
45Shang S, Yang S, Liu J, et al. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves[J]. J Appl Phys, 2016, 120(4):509.
46Li M, Guo L, Dong J, et al. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves[J]. J Phys D: Appl Phys, 2014,47(18):185102.
47Plum E. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers[J]. Appl Phys Lett, 2016, 108(24):146.
48Zhu B, Feng Y, Zhao J, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22):23196.
49Zhang Q, Shen Z, Wang J, et al. Design of a switchable microwave absorber[J]. IEEE Antennas Wireless Propagation Lett, 2012, 11(2):1158.
50Liu S, Cui T J. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE J Selected Topics Quantum Electron, 2017, 99:1.
51Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light Sci Appl, 2016, 5(11):e16172.
52Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 2016, 3(10):1600156.
53Zhai H, Zhan C, Liu L, et al. Reconfigurable wideband metamate-rial absorber with wide angle and polarisation stability[J]. Electron Lett, 2015, 51(21):1624.
54Zhai H, Zhang B, Zhang K, et al.A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability[J]. J Electromagn Waves Appl, 2017,31(4):447.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[3] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[4] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[5] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[6] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[7] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[8] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[9] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[10] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[11] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
[12] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed