Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 114-122    https://doi.org/10.11896/j.issn.1005-023X.2017.021.016
  新材料新技术 |
基于集总元件的超材料吸波器研究进展*
宋健, 李敏华, 董建峰
宁波大学信息科学与工程学院,宁波 315211
Progress in Metamaterial Absorber Based on Lumped Elements
SONG Jian, LI Minhua, DONG Jianfeng
College of Information Science and Engineering,Ningbo University,Ningbo 315211
下载:  全 文 ( PDF ) ( 3645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于集总元件的亚波长电磁超材料吸波器,因其厚度薄、吸波率强、谐振频率(或带宽)可调谐性和便于集成等优点越来越受到人们的关注。介绍了当前国内外基于集总元件的超材料吸波器的最新研究进展,并根据集总元件的种类对其进行分类,阐述了不同的吸波机理。这种可重构超介质吸波材料在能量搜集、信号源探测、(5G通信)电磁兼容、MINO天线、舰船隐身等诸多前沿领域有广阔的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋健
李敏华
董建峰
关键词:  超材料  吸波器  集总元件  集总电阻  集总电容  二极管    
Abstract: Lumped elements-loaded electromagnetic metamaterial absorbers constructed by sub-wavelength structures, have aroused a surge of interest because of their unique advantages such as thin thickness, strong absorption, resonant frequency(or bandwidth) tunability and easy integration. This paper introduces the latest research progress of metamaterials absorber based on lumped elements at home and abroad, and classifies them according to the types of lumped components, together with different absorbing mechanisms. This kind of reconfigurable metamaterial absorbers have a wide application value in energy harvesting, signal source detection, (5G communication) electromagnetic compatibility, MINO antenna, ship stealth and so forth.
Key words:  metamaterials    absorber    lumped element    lumped resistor    lumped capacitor    diode    lumped inductor
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(61501269);浙江省自然科学基金(LQ16F010002)
通讯作者:  李敏华,男,1985年生,博士,讲师,从事人工电磁媒质及其在微波器件上的应用研究 E-mail:liminhua@nbu.edu.cn董建峰:男,1964年生,博士,教授,博士研究生导师,从事负折射率材料、手征介质波导等方面的研究 E-mail:dongjianfeng@nbu.edu.cn   
作者简介:  宋健:男,1990年生,硕士研究生,研究方向为超材料的吸波特性 E-mail:790917990@qq.com
引用本文:    
宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
SONG Jian, LI Minhua, DONG Jianfeng. Progress in Metamaterial Absorber Based on Lumped Elements. Materials Reports, 2017, 31(21): 114-122.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.016  或          https://www.mater-rep.com/CN/Y2017/V31/I21/114
1 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77.
2 Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys Rev Lett, 1996,76(25):4773.
3 Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory Techniques, 1999,47(11):2075.
4 Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000,85(18):3966.
5 Rosenblatt G, Orenstein M. Perfect lensing by a single interface: Defying loss and bandwidth limitations of metamaterials[J]. Phys Rev Lett, 2015, 115(19):195504.
6 Bhardwaj A, Ramakrishna S A. Focusing properties of a spherical perfect lens with eccentric deformations[J]. J Optical Soc Am B, 2016, 33(9):2000.
7 Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366.
8 Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nat Comm, 2010, 1(3):21.
9 Yu X, Gao X, Qiao W, et al. Broadband tunable polarization converter realized by graphene-based metamaterial[J]. IEEE Photonics Technol Lett, 2016, 28(21):2399.
10Tassin P. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting[J]. Appl Phys Lett, 2017, 110(8):143904.
11Karaaslan M, Bagmancl M, Unal E, et al. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications[J]. Optics Comm, 2017, 392:31.
12Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20):207402.
13Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Appl Phys Lett, 2009, 95(24):207402.
14Li M, Yang H L, Hou X W, et al. Perfect metamaterial absorber with dual bands[J]. Progress Electromagn Res, 2010,108:37.
15Tao H, Bingham C M, Pilon D, et al. A dual band terahertz metamaterial absorber[J]. J Phys D: Appl Phys, 2010,43(22):225102.
16Li H, Ma H F, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J].Optics Express, 2011, 19(10):9401.
17Xu H X, Wang G M, Qi M Q, et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber[J]. Phys Rev B, 2012, 86(20):3368.
18Dickie R, Cahill R, Gamble H S, et al. Spatial demultiplexing in the submillimeter wave band using multilayer free-standing frequency selective surfaces[J]. IEEE Transactions Antennas Propagation, 2005, 53(6):1904.
19Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber[J]. Appl Phys Lett, 2011, 100(10):103506.
20Mias C, Yap J H. A Varactor-tunable high impedance surface with a resistive-lumped-element biasing grid[J]. IEEE Transactions Antennas Propagation, 2007, 55(7):1955.
21Gu C, Qu S B, Pei Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chin Phys Lett,2010,11:185.
22Cheng Y Z, Wang Y, Nie Y, et al. Design, fabrication and mea-surement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. J Appl Phys, 2012, 111(4):509.
23Zhu B, Feng Y, Zhao J, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Appl Phys Lett, 2010, 97(5):051906.
24Luo Z, Long J, Chen X, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Appl Phys Lett, 2016, 109(7):1516.
25Liu L G, Li Y Q, Meng Q Z, et al. Design of an invisible radome by frequency selective surfaces loaded with lumped resistors[J]. Chin Phys Lett, 2013, 30(6):64101.
26Zhao M, Yu X, Wang Q, et al. Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm[J]. IEEE Antennas Wireless Propagation Lett, 2015, 14:1467.
27Ghosh S, Bhattacharyya S, Srivastava K V. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber[J]. IET Microwaves Antennas Propagation, 2016, 10(8):850.
28Yang G H, Liu X X, Lv Y L, et al. Broadband polarization-insensitive absorber based on gradient structure metamaterial[J]. J Appl Phys, 2014, 115(17):1324.
29Lee H M, Lee H S. Resonant mode behavior of lumped-resistor-loaded electric-inductive-capacitive resonator and its absorber application[J]. AIP Adv, 2013, 3(5):041109-R.
30Zhang D, Cao X Y, Zhang W Q, et al. Design and application of wave-absorbing split ring resonator[J]. J Microwaves,2016(s1):67(in Chinese).
张迪, 曹祥玉, 张武岐, 等. 吸波型开口谐振环设计与应用研究[J]. 微波学报, 2016(s1):67.
31Li S, Gao J, Cao X, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. J Appl Phys, 2014, 116(4):207402.
32Munaga P, Ghosh S, Bhattacharyya S, et al. A fractal-based compact broadband polarization insensitive metamaterial absorber using lumped resistors[J]. Microwave Optical Technol Lett, 2016,58(2):343.
33陈强, 陈亮, 白佳俊, 等. 一种宽带小型化超材料吸波体设计[C] ∥2015年全国微波毫米波会议论文集. 合肥, 2015: 1579.
34Khuyen B X, Tung B S, Yoo Y J, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band[J]. Sci Rep, 2017, 7:45151.
35Yoo Y J, Zheng H Y, Kim Y J, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell[J]. Appl Phys Lett, 2014, 105(4):1353.
36Liu L Y, Zhang Z J, L L X. Research on broadband metamaterial absorber based on lumped resistance[J]. J Microwaves, 2016,32(5):50(in Chinese).
刘凌云, 张政军, 刘力鑫. 基于集总电阻的宽频带超材料吸波器研究[J]. 微波学报, 2016,32(5):50.
37Langley R J, Parker E A. Equivalent circuit model for arrays of square loops[J]. Electron Lett, 1982,18(7):294.
38Costa F, Monorchio A, Manara G. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model[J]. IEEE Antennas Propagation Magazine, 2012,54(4):35.
39Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impe-dance surfaces[J]. IEEE Transactions Antennas Propagation, 2010,58(5):1551.
40Zhao J, Cheng Y. Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors[J]. J Electron Mater, 2016, 45(10):5033.
41Shi Y, Li Y C, Hao T, et al. A design of ultra-broadband metamaterial absorber[J]. Waves Random Complex Media, 2017,27(2):381.
42Gu S, Barrett J P, Hand T H, et al. A broadband low-reflection metamaterial absorber[J]. J Appl Phys, 2010, 108(6):064913.
43Gu C, Qu S B, Pei Z B, et al. Design of a wide-band metamaterial absorber based on loaded magnetic resonators[J]. Acta Phys Sin, 2011, 60(8):656(in Chinese).
顾超, 屈绍波, 裴志斌,等. 基于磁谐振器加载的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8):656.
44Chen Q, Jiang J J, Xu X X, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface[J]. J Electromagn Waves Appl, 2012,26(16):2102.
45Shang S, Yang S, Liu J, et al. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves[J]. J Appl Phys, 2016, 120(4):509.
46Li M, Guo L, Dong J, et al. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves[J]. J Phys D: Appl Phys, 2014,47(18):185102.
47Plum E. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers[J]. Appl Phys Lett, 2016, 108(24):146.
48Zhu B, Feng Y, Zhao J, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22):23196.
49Zhang Q, Shen Z, Wang J, et al. Design of a switchable microwave absorber[J]. IEEE Antennas Wireless Propagation Lett, 2012, 11(2):1158.
50Liu S, Cui T J. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE J Selected Topics Quantum Electron, 2017, 99:1.
51Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light Sci Appl, 2016, 5(11):e16172.
52Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 2016, 3(10):1600156.
53Zhai H, Zhan C, Liu L, et al. Reconfigurable wideband metamate-rial absorber with wide angle and polarisation stability[J]. Electron Lett, 2015, 51(21):1624.
54Zhai H, Zhang B, Zhang K, et al.A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability[J]. J Electromagn Waves Appl, 2017,31(4):447.
[1] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[2] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[3] 陈俊豪, 曾晓辉, 谢友均, 龙广成, 唐卓. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 22080126-9.
[4] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[5] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[6] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[7] 刘雄飞, 王壮, 吴尧尧, 王晓中. 电磁吸波结构研究进展[J]. 材料导报, 2023, 37(22): 22020147-8.
[8] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[9] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[10] 陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
[11] 张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
[12] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[13] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[14] 宋友婷, 黄聪颖, 封哲宇, 时胜圆, 李敏华, 董建峰. 吸透一体超材料研究进展[J]. 材料导报, 2022, 36(11): 21060182-9.
[15] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed