Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22060089-12    https://doi.org/10.11896/cldb.22060089
  高分子与聚合物基复合材料 |
基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展
张婷婷*, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺
山西师范大学化学与材料科学学院,磁性分子与磁信息材料教育部重点实验室,山西 临汾 041004
Research Progress of Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures Containing Carbazole Donor Molecules
ZHANG Tingting*, GAO Hui, YANG Yiqing, HONG Xingzhi, REN Ying, WU Haishun
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, Shanxi, China
下载:  全 文 ( PDF ) ( 12568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热活化延迟荧光(Thermally activated delayed fluorescence,TADF)材料是新一代发光材料,可以通过吸收环境中的热量使分子的三重态转换为单重态,理论上激子利用率达到100%,量子效率大大提高,在有机发光二极管(Organic light-emitting diode,OLED)中有广阔的应用前景。给-受体(Donor-acceptor,D-A)型的纯有机分子是关注度较高的一类TADF分子。其中咔唑作为一种给体单元,易经其他取代基修饰形成新给体,使D-A分子具有较小的最低三重态和单重态的能级差ΔEST,是经常选用的给体基团。另外,理论计算在研究咔唑衍生物分子的TADF性质,预测其在OLED中的性能方面发挥了重要作用。本文综述了基于不同咔唑类给体构筑的D-A结构的TADF分子,依据咔唑分子上取代基的不同,具体介绍了近五年各类TADF分子的结构特点和发光效率,重点讨论了这些分子在器件应用方面的性能,并且结合理论计算分析的结果总结了可能改变D-A型TADF性质的因素,期望能够为未来设计和合成性能更加优异的含咔唑给体的D-A型TADF分子提供有价值的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷婷
高慧
杨溢青
洪兴枝
任颖
武海顺
关键词:  热活化延迟荧光  给-受体分子  咔唑衍生物  发光性能  有机发光二极管    
Abstract: The emitting materials with thermally activated delayed fluorescence (TADF) characteristics is a new generation of light-emitting materials with high quantum yield, which can convert the triplet state of molecules into the singlet state by absorbing heat in the environment. They have a wide application prospect in organic light-emitting diode (OLED). Donor-acceptor (D-A) type pure organic molecules as a kind of TADF molecules have drawn significant attention. Carbazole as an excellent donor unit is often be selected to form D-A type TADF molecules. Because it is easy to be modifed by different substituent groups, and is also easy to combine with different electron acceptor units. The complexes containing carbazole derivative have a small energy level difference between the lowest triplet and singlet (ΔEST). In addition, theoretical calculation plays an important role in studying TADF properties of carbazole derivatives and predicting their performance in OLED. In this paper, D-A type TADF molecules based on different carbazole donors are reviewed. According to the different substituents on carbazole molecules, the structural characteristics and luminescence efficiency of various TADF molecules in recent five years are summarized, as well as their performance in device application. The factors that may change the properties of D-A type TADF are also discussed combined with the results of theoretical calculation. It provides valuable reference for researchers to design and synthesize new TADF molecules with better performance in the future.
Key words:  thermally activated delayed fluorescence    donor-acceptor type molecules    carbazole derivative    luminescent property    organic light-emitting diode
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  O625  
基金资助: 山西省研究生教育改革课题(2019JG126);山西省高等学校教学改革创新项目(J2020122)
通讯作者:  *张婷婷,山西师范大学化学与材料科学学院副教授、硕士研究生导师。2004年忻州师范学院本科毕业,2007年首都师范大学硕士毕业,2012年山西师范大学博士毕业留校工作至今。目前主要从事发光材料的设计、性能和发光机理等方面的研究工作。发表论文20余篇,包括Journal of Physical Chemistry C、Journal of Physical Chemistry A、RSC Advances等,出版专著1部。zhangtt816@163.com   
引用本文:    
张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
ZHANG Tingting, GAO Hui, YANG Yiqing, HONG Xingzhi, REN Ying, WU Haishun. Research Progress of Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures Containing Carbazole Donor Molecules. Materials Reports, 2023, 37(16): 22060089-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060089  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22060089
1 Ledwon P. Organic Electronics, 2019, 75, 105422.
2 Xie F M, Zhou J X, Li Y Q, et al. Journal of Materials Chemistry C, 2020, 8, 9476.
3 Braveenth R, Lee H, Kim S, et al. Journal of Materials Chemistry C, 2019, 7, 7672.
4 Qu C, Xia G Q, Xu Y C, et al. Journal of Materials Chemistry C, 2020, 8, 3846.
5 Miranda-Salinas H, Hung Y T, Chen Y S, et al. Journal of Materials Chemistry C, 2021, 9, 8819.
6 Zhang B H, Cheng Y X. The Chemical Record, 2019, 19, 1624.
7 Liu G, Feng G, Li X, et al. Scientia Sinica Chimica, 2022, 52(6), 880(in Chinese).
刘广建, 冯改丽, 李夏芬, 等.中国科学: 化学, 2022, 52(6), 880.
8 Gao Y. Theoretical design and investigation on d-a organic molecules with highly thermally activated delayed fluorescence property. Ph. D. Thesis, Jilin University, China, 2018 (in Chinese).
高影. 高效热活性延迟荧光 D-A 型有机小分子的理论设计和研究. 博士学位论文, 吉林大学,2018.
9 Peng X F, Lei Y, Liu Z, et al. Acta Physico-Chimca Sinica, 2016, 32(9), 2369(in Chinese).
彭雪峰, 雷勇, 刘振, 等.物理化学学报, 2016, 32(9), 2369.
10 Zhang Q, Wang Y X, Yoon S J, et al. Journal of Materials Chemistry C, 2020, 8, 1864.
11 Zhang T T, Hong X Z, Gao H, et al. Progress in Chemistry, 2022, 34(2), 411(in Chinese).
张婷婷, 洪兴枝, 高慧, 等.化学进展, 2022, 34(2), 411.
12 Tao Y, Yuan K, Chen T, et al. Advanced Materials, 2014, 26, 7931.
13 Baraket F, Pedras B, Torres É, et al. Dyes and Pigments, 2020, 175, 108114.
14 Lu Q, Jiang G, Li F, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117964.
15 Feng S, Wen K, Si Y, et al. Journal of Computational Chemistry, 2018, 39, 2601.
16 Aydemir M, Xu S D, Chen C J, et al. The Journal of Physical Chemistry C, 2017, 121, 17764.
17 Ni F, Wu Z B, Zhu Z, et al. Journal of Materials Chemistry C, 2017, 5, 1363.
18 Jia J H, Liang D, Yu R, et al. Chemistry of Materials, 2020, 32, 620.
19 Colella M, Danos A, Monkman A P. The Journal of Physical Chemistry C, 2019, 123, 17318.
20 Woo S J, Kim Y, Kim Y H, et al. Journal of Materials Chemistry C, 2019, 7, 4191.
21 Scholz R, Kleine P, Lygaitis R, et al. The Journal of Physical Chemistry A, 2020, 124, 1535.
22 Ye J T, Wang H Q, Zhang Y, et al. The Journal of Physical Chemistry C, 2020, 124, 921.
23 Weissenseel S, Drigo N A, Kudriashova L G, et al. The Journal of Physical Chemistry C, 2019, 123, 27778.
24 Zhao K, Omar O H, Nematiaram T, et al. Journal of Materials Chemistry C, 2021, 9, 3324.
25 Wang M S, Chatterjee T, Foster C J, et al. Journal of Materials Chemistry C, 2020, 8, 3395.
26 Gao Y J, Chen W K, Zhang T T, et al.The Journal of Physical Chemistry C, 2018, 122, 27608.
27 Wang Q, Gao Y J, Zhang T T, et al.RSC Advances, 2019, 9, 20786.
28 Hussain A, Yuan H Y, Li W L, et al. Journal of Materials Chemistry C, 2019, 7, 6685.
29 Gao Y J, Zhang T T, Chen W K. The Journal of Physical Chemistry C, 2021, 125, 5670.
30 Zhao S, Zhang X, Lu L, et al. Materials Reports, 2020, 34(9), 17155(in Chinese).
赵思宇, 张祥, 卢伶, 等.材料导报, 2020, 34(9), 17155.
31 Wang M S, Chatterjee T, Foster C J, et al. Journal of Materials Chemistry C, 2020, 8, 3395.
32 Serevičius T, Skaisgiris R, Dodonova J, et al. Physical Chemistry Chemical Physics, 2020, 22, 265.
33 Chai D Y, Zou Y, Xiang Y P, et al. Chemical Communications, 2019, 55, 15125.
34 Wu P, Xie F M, Wei H X, et al. Chemical Physics Letters, 2021, 771, 138474.
35 Sathiyan G, Sivakumar E K T, Ganesamoorthy R, et al. Tetrahedron Letters, 2016, 57, 243.
36 Vlasselaer M, Dehaen W. Molecules, 2016, 21, 785.
37 Karon K, Lapkowski M. Journal of Solid State Electrochemistry, 2015, 19, 2601.
38 Ding W, Cheng B, Wang M. et al. Chinese Journal Organic Chemistry, 2022, 42(2), 363(in Chinese).
丁伟, 程勃雯, 王萌, 等.有机化学, 2022, 42(2), 363.
39 Wex B, Kaafarani B R. Journal of Materials Chemistry C, 2017, 5, 8622.
40 Cao X, Zhang D, Zhang S, et al. Journal of Materials Chemistry C, 2017, 5, 7699.
41 Lin S, Chan L, Lee R, et al. Advanced Materials, 2008, 20, 3947.
42 Li B, Nomura H, Miyazaki H, et al. Chemistry Letters, 2014, 43, 319.
43 Ledwon P, Zassowski P, Jarosz T, et al. Journal of Materials Chemistry C, 2016, 4, 2219.
44 Niu R, Li J Y, Liu D, et al. Dyes and Pigments, 2021, 194, 109581.
45 Geng Y, D'Aleo A, Inada K, et al. Angewandte Chemie International Edition, 2017, 56, 16536.
46 Skaisgiris R, Serevičius T, Kazlauskas K, et al. Journal of Materials Chemistry C, 2019, 7, 12601.
47 Im J B, Lampande R, Kim G H, et al. The Journal of Physical Chemistry C, 2017, 121, 1305.
48 Matulaitis T, Imbrasas P, Kukhta N A, et al. The Journal of Physical Chemistry C, 2017, 121, 23618.
49 Im Y, Han S H, Lee J Y. Journal of Materials Chemistry C, 2018, 6, 5012.
50 Kim D S, Lee K H, Lee J Y, et al. Chemistry—a European Journal, 2019, 25, 11765.
51 Xie F M, An Z D, Xie M, et al. Journal of Materials Chemistry C, 2020, 8, 5769.
52 Li X, Li J Y, Liu D, et al. New Journal of Chemistry, 2020, 44, 9743.
53 Kang Y J, Yun J H, Lee J Y. Organic Electronics, 2020, 78, 105604.
54 Voll C C A, Engelhart J U, Einzinger M, et al. European Journal of Organic Chemistry, 2017, 32, 4846.
55 Zhang Z, Ding D, Wei Y, et al. Chemical Engineering Journal, 2020, 382, 122485.
56 Maeng J H, Ahn D H, Lee H, et al. Dyes and Pigments, 2020, 180, 108485.
57 Zhu X D, Tian Q S, Zheng Q, et al. Organic Electronics, 2019, 68, 113.
58 Lee D R, Hwang S K, Jeon S K, et al. Chemical Communications, 2015, 51, 8105.
59 Konidena R K, Lee K H, Lee J Y, et al. Chemistry—an Asian Journal, 2019, 14, 2251.
60 Zhang Q, Xiang S P, Huang Z, et al. Dyes and Pigments, 2018, 155, 51.
61 Tao W W, Wang K, Chen J X, et al. Journal of Materials Chemistry C, 2019, 7, 4475.
62 Jung M, Lee K H, Lee J Y. Chemistry—a European Journal, 2019, 26, 4816.
63 Yun J H, Lee K H, Lee J Y. Chemical Engineering Journal, 2020, 400, 125940.
64 Ma F, Cheng Y, Zhang X X, et al. Dyes and Pigments, 2019, 166, 245.
65 Liu H, Li J F, Li G G, et al. Dyes and Pigments, 2020, 180, 108521.
66 Shizu K, Tanaka H, Uejima M, et al.The Journal of Physical Chemistry C, 2015, 119, 1291.
67 Sauvé E R, Paeng J, Yamaguchi S, et al. The Journal of Organic Chemistry, 2020, 85, 108.
68 Cho Y J, Jeon S K, Lee S, et al. Chemistry of Materials, 2016, 28, 5400.
69 Kim H M, Choi J M, Lee J Y. RSC Advances, 2016, 6, 64133.
70 Kim M, Choi J M, Lee J Y. Chemical Communications, 2016, 52, 10032.
71 Oh C S, Pereira D S, Han S H, et al. ACS Applied Materials Interfaces, 2018, 10, 35420.
72 Wang H N, Cheng C, Wang D, et al. Organic Electronics, 2021, 96, 106254.
73 Lee H J, Lee H L, Han S H, et al. Chemical Engineering Journal, 2021, 427, 130988.
74 Xiao Z Q, Li N Q, Yang W, et al. Chemical Engineering Journal, 2021, 419, 129628.
75 Haykir G, Aydemir M, Danos A, et al. Dyes and Pigments, 2021, 194, 109579.
76 Karthik D, Ahn D H, Ryu J H, et al. Journal of Materials Chemistry C, 2020, 8, 2272.
77 Ishimatsu R, Matsunami S, Kasahara T, et al. Angewandte Chemie International Edition, 2014, 126, 7113.
78 Park H J, Lee H L, Lee H J, et al.Chemistry of Materials, 2019, 31, 10023.
79 Gao F F, Du R M, Han C M, et al. Chemical Science, 2019, 10, 5556.
80 Yuan W B, Yang H N, Zhang M C, et al. Chinese Chemical Letters, 2019, 30, 1955.
81 Serevičius T, Skaisgiris R, Dodonova J, et al. Physical Chemistry Chemical Physics, 2020, 22, 265.
82 Yuan W B, Jin G, Su N, et al. Dyes and Pigments, 2020, 183, 108705.
83 Yuan W, Zhang M, Zhang X, et al. Dyes and Pigments, 2018, 159, 151.
84 Mei L, Hu J, Cao X, et al. Chemical Communications, 2015, 51, 13024.
85 Lee Y H, Park S, Oh J, et al. ACS Applied Materials & Interfaces, 2017, 9, 24035.
86 Li Q, Hu J, Lv J H, et al. Angewandte Chemie International Edition, 2020, 45, 20349.
87 Jang J S, Lee H L, Lee K H, et al. Journal of Materials Chemistry C, 2021, 9, 2408.
88 Duan Y C, Gao Y, Pan Q Q, et al. Dyes and Pigments, 2021, 194, 109547.
89 Dong X, Wang S, Gui C, et al. Tetrahedron, 2018, 74, 497.
90 Shi H, Wang S, Qin L, et al. Dyes and Pigments, 2018, 149, 323.
91 Nikolaenko A E, Cass M, Bourcet F, et al. Advanced Materials, 2015, 27, 7236.
92 Zhang B H, Cheng Y X. The Chemical Record, 2018, 19, 1624.
93 Wang Y J, Zhu Y H, Lin X D, et al. Journal of Materials Chemistry C, 2018, 6, 568.
94 Yang Y, Wang S M, Zhu W H, et al. Advanced Functional Materials, 2018, 28, 1706916.
95 Cheng Y X, Yang Y K, Li K F, et al. Chemistry—an Asian Journal, 2019, 14, 574.
96 Long Y B, Chen X J, Wu H Y, et al. Angewandte Chemie International Edition, 2021, 60, 7220.
97 Chen J K, Liu H, Guo J J, et al. Angewandte Chemie International Edition, 2022, 61, e202116810.
[1] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[2] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[3] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[4] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[5] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[6] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[7] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[8] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[9] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[10] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[11] 谢凤鸣, 魏怀鑫, 张强, 周家宏, 赵鑫. 基于三苯基-1,3,5-均三嗪的星形双极性蓝色磷光主体材料的合成及性质[J]. 材料导报, 2019, 33(24): 4170-4173.
[12] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[13] 张晓英,周梓良,杨伟光,王锋. 掺Eu2+蓝光长余辉材料发光性能影响因素[J]. 材料导报, 2019, 33(15): 2497-2504.
[14] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed