Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21060045-10    https://doi.org/10.11896/cldb.21060045
  多尺度稀土晶体材料及其应用 |
稀土发光配合物及其在有机发光二极管中的应用
卓明鹏1,2,*, 俞燕君2, 丁灵奕2, 陈伟凡3,4, 廖良生2
1 苏州大学纺织与服装工程学院,江苏 苏州 215123
2 苏州大学功能纳米与软物质研究院,江苏 苏州 215123
3 南昌大学材料科学与工程学院,南昌 330031
4 南昌大学稀土研究院,南昌 330031
Rare Earth Luminous Complexes and Their Applications in Organic Light-emitting Diodes
ZHUO Mingpeng1,2,*, YU Yanjun2, DING Lingyi2, CHEN Weifan3,4, LIAO Liangsheng2
1 College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
2 Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
3 School of Materials Science & Engineering, Nanchang University, Nanchang 330031, China
4 Rare Earth Research Institute, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 8660KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土材料素有“工业维生素”或“工业味精”之美称,被广泛应用于信息、能源、交通、环境、航天航空等领域。稀土材料也是我国具有特色的战略资源。稀土材料独特的4f壳层电子结构具有丰富的能级结构和优良的光、电、磁、核等物理特性,使得稀土发光配合物可实现从紫外光到红外光的荧光发射,同时具有发光峰窄、稳定性好以及光色可调等特点,在有机电致发光器件研究领域引起了广泛关注。本文综述了基于合理的设计选择有机配体,调控稀土配合物宇称禁阻4f-4f跃迁和宇称允许5d-4f跃迁两种发光机制,并进一步总结其在有机电致发光器件中运用的研究进展,为新型高性能有机电致发光器件的设计与优化提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卓明鹏
俞燕君
丁灵奕
陈伟凡
廖良生
关键词:  稀土发光配合物  有机发光二极管  4f-4f跃迁  5d-4f跃迁    
Abstract: Rare earth materials have been regarded as ‘industrial vitamin’ or ‘industrial monosodium glutamate’, which were widely applied in information, energy, transportation, environment, aerospace and the other fields. Due to the unique 4f shell electronic structure, the rare earth materials demonstrate the excellent physical property of the optical, electrical, magnetic and nuclear aspects, acting as the strategic resources in China. Notably, the rare earth materials with the outstanding fluorescence emission from ultraviolet light to infrared light region play an important role among all kinds of luminescent materials. Significantly, the rare earth luminous complexes expected to become high-performance electroluminescence materials with the characteristics of narrow luminescence peak, high luminescence stability, and adjustable light color, and so on, which are attributed to the novel photoluminescence mechanism of both parity inhibited 4f-4f transition and parity allowed 5d-4f transition. Furthermore, a summary of recent advances in organic light-emitting diodes (OLEDs) of organic rare earth complexes supplies an insight for rationally designing and optimizing the high-performant OLEDs.
Key words:  rare earth luminous complexes    organic light-emitting diodes    4f-4f transition    5d-4f transition
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O641.4  
基金资助: 国家重点研发计划(2016YFB0400700);博士后创新人才支持计划(BX20190228);国家自然科学基金(52203234;51773141;61961160731;51821002)
通讯作者:  *mpzhuo@suda.edu.cn,卓明鹏,苏州大学纺织与服装工程学院副教授。2014年、2016年分别获南昌大学材料科学与工程学院学士和硕士学位。2019年获苏州大学功能纳米与软材料研究院博士学位。2019年获中国博士后创新人才计划资助在廖良生教授和李述汤院士指导下开展博士后研究工作,2022年加盟苏州大学纺织与服装工程学院。以第一或通信作者在Adv. Mater.(3篇)、Matter、Nat. Commun.(2篇)、Angew. Chem. Int. Ed.(3篇)、CCS Chem.、ACS Nano(2篇)、Mater. Horiz.、ACS Appl. Mater. Interfaces(2篇)、J. Phys. Chem. Lett.(2篇)、ACS Mater. Lett.等国际重要学术期刊发表论文29篇(其中有16篇IF > 10)。主要研究方向是有机光电功能低维微纳米晶体和多级异质结构的精细合成,稀土/钨/碳光电纳米功能材料的合成新方法、构效关系及其柔性智能纺织应用。   
引用本文:    
卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
ZHUO Mingpeng, YU Yanjun, DING Lingyi, CHEN Weifan, LIAO Liangsheng. Rare Earth Luminous Complexes and Their Applications in Organic Light-emitting Diodes. Materials Reports, 2023, 37(3): 21060045-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060045  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21060045
1 Zaimes G G, Hubler B J, Wang S, et al. ACS Sustainable Chemistry & Engineering, 2015, 3(2), 237.
2 Crawford S E, Ohodnicki P R, Baltrus J P, et al. Journal of Materials Chemistry C, 2020, 8(24), 7975.
3 Chen G, Qiu H, Prasad P N, et al. Chemical Reviews, 2014, 114(10), 5161.
4 Li X, Xie Y, Song B, et al. Angewandte Chemie International Edition, 2017, 56(10), 2689.
5 Meng K, Yao C, Ma Q, et al. Advanced Science, 2019, 6(10), 1802112.
6 Yu T, Su W, Li W, et al. Advanced Materials,1995, 7(11), 900.
7 Zhu Y C, Zhou L, Li H Y, et al. Advanced Materials, 2011, 23(35), 4041.
8 Yang C, Fu L M, Wang Y, et al. Angewandte Chemie International Edition, 2004, 43(38), 5010.
9 Liu G H. Materials science of rare earth, Chemical Industry Press, China, 2007, pp. 8(in Chinese).
刘光华. 稀土材料学, 化学工业出版社,2007, pp.8.
10 D’Aléo A, Pointillart F, Ouahab L, et al. Coordination Chemistry Reviews, 2012, 256(15-16), 1604.
11 Blasse G, Dirksen G J, Sabbatini N, et al. Inorganica Chimica Acta, 1987, 133, 167.
12 Jenks T C, Kuda-Wedagedara A N W, Bailey M D, et al. Inorganic Chemistry, 2020, 59(4), 2613.
13 Starynowicz P, Bukietyńska K, Gołab S, et al. European Journal of Inorganic Chemistry, 2002, 9, 2344.
14 Starynowicz P, Bukietyn'ska K. European Journal of Inorganic Chemistry, 2002, 7, 1835.
15 Starynowicz P, Polyhedron, 2003, 22(2), 337.
16 Kuda-Wedagedara A N W, Wang C, Martin P D, et al. Journal of the American Chemical Society, 2015, 137(15), 4960.
17 Wang S G, Park S H, Cramer N, et al. Angewandte Chemie International Edition, 2018, 57(19), 5459.
18 Suta M, Harmgarth N, Kuhling M, et al. Chemistry—An Asian Journal, 2018, 13(8), 1038.
19 Harder S, Naglav D, Ruspic C, et al. Chemistry, 2013, 19(37), 12272.
20 Domingos A, Marcalo J, Marques N, et al. Polyhedron, 1995, 14, 3067.
21 Shipley C P, Capecchi S, Salata O V, et al. Advanced Materials, 1999, 11(7), 533.
22 Wang L, Zhao Z, Zhan G, et al. Light: Science & Applications, 2020, 9(1), 157.
23 Zhao Z, Wang L, Zhan G, et al. National Science Review, 2020, 8(2), nwaa193.
24 Zhan G, Wang L, Zhao Z, et al. Angewandte Chemie International Edition, 2020, 59(43), 19011.
25 Qi H, Zhao Z, Zhan G, et al. Inorganic Chemistry Frontiers, 2020, 7, 4593.
26 Zheng X L, Liu Y, Pan M, et al. Angewandte Chemie International Edition, 2007, 46(39), 7399.
27 Katkova M A, Ilichev V A, Konev A N, et al. Journal of Applied Physics, 2008, 104(5), 053706.
28 Strasser A, Vogler A. Chemical Physics Letters, 2003, 379(3-4), 287.
29 Yu G, Ding F, Wei H, et al. Journal of Materials Chemistry C, 2016, 4(1), 121.
30 Kido J, Nagai K. Journal of Alloys and Compounds, 1993, 192, 30.
31 Zhang S, Turnbull G A, Samuel I D W. Organic Electronics, 2012, 13(12), 3091.
32 Ilmi R, Khan M S, Li Z, et al. Inorganic Chemistry, 2019, 58(13), 8316.
33 Zhou L, Zhang H, Deng R, et al. Journal of Applied Physics, 2007, 102(6), 064504.
34 Adachi C, Baldo M A, Forrest S R. Journal of Applied Physics, 2000, 87(11), 8049.
35 Zhang L, Li B, Zhang L, et al. ACS Applied Materials & Interfaces, 2009, 1(9), 1852.
36 Chen Z, Ding F, Hao F, et al. Organic Electronics, 2009, 10(5), 939.
37 Artizzu F, Marchiò L, Mercuri M L, et al. Advanced Functional Mate-rials, 2007, 17(14), 2365.
38 Canzler T W, Kido J. Organic Electronics, 2006, 7(1), 29.
39 Zhou L, Li L, Jiang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(29), 16046.
40 Zhao Z, Bian M, Lin C, et al. Science China Chemistry, 2021, 64(9), 1504.
41 Martín-Ramos P, Coya C, Álvarez Á L, et al. The Journal of Physical Chemistry C, 2013, 117(19), 10020.
42 Fang P, Wang L, Zhan G, et al. ACS Applied Materials & Interfaces, 2021, 13(38), 45686.
43 Yu T, Su W, Li W, et al. Solid-State Electronics, 2007, 51(6), 894.
44 Freidzon A Y, Scherbinin A V, Bagaturyants A A, et al. The Journal of Physical Chemistry A, 2011, 115(18), 4565.
45 Li J, Wang L, Zhao Z, et al. Nature Communications, 2020, 11, 5218.
46 Yu Y J, Hu Y, Yang S Y, et al. Angewandte Chemie International Edition, 2020, 59(48), 21578.
47 Wei Y C, Wang S F, Hu Y, et al. Nature Photonics, 2020, 14(9), 570.
48 Ye H Q, Li Z, Peng Y, et al. Nature Materials, 2014, 13(4), 382.
[1] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[2] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[3] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[4] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[5] 谢凤鸣, 魏怀鑫, 张强, 周家宏, 赵鑫. 基于三苯基-1,3,5-均三嗪的星形双极性蓝色磷光主体材料的合成及性质[J]. 材料导报, 2019, 33(24): 4170-4173.
[6] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed