Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21060149-7    https://doi.org/10.11896/cldb.21060149
  金属与金属基复合材料 |
7050-T7351铝合金力学性能测试及本构模型研究
邓云飞, 胡昂, 任光辉*, 魏刚
中国民航大学航空工程学院,天津 300300
Mechanical Properties Tests and Constitutive Model Research for 7050-T7351 Aluminum Alloy
DENG Yunfei, HU Ang, REN Guanghui*, WEI Gang
College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 7201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析7050-T7351铝合金的应力流动行为和塑性变形情况,对该铝合金进行了不同应变率和温度下的力学性能测试,通过测试结果标定了Johnson-Cook(JC)、Hartley-Srinivasan(HS)和Swift本构模型。利用ABAQUS有限元软件建立有限元模型进行仿真分析,根据计算结果对JC本构模型给予修正,最终得到Modified Johnson-Cook(MJC)本构模型。将JC的应变率和温度项乘子与HS和Swift模型耦合,然后进行Taylor杆撞击测试以及相应的有限元计算,验证三种本构模型的有效性。结果表明:JC模型高估了7050-T7351铝合金的应力流动行为,而MJC本构模型预测的结果与试验有很好的一致性,HS和 Swift模型均能较好地反映该材料在准静态下的应力流动行为。此外,MJC模型可以很好地预测Taylor杆的塑性变形,而将JC的应变率和温度项乘子与HS和Swift模型耦合后的修正模型对Taylor杆变形情况的预测精度相对较差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓云飞
胡昂
任光辉
魏刚
关键词:  流动行为  塑性变形  霍普金森压杆(SHPB)  本构模型  Taylor杆    
Abstract: In order to accurately evaluate the stress flow behavior and plastic deformation of 7050-T7351 aluminum alloy, mechanical properties tests of the aluminum alloy at different strain rates and temperatures were preformed. The constitutive models of Johnson-Cook (JC), Hartley-Srinivasan (HS) and Swift were calibrated by using the test results. And then, the corresponding finite element (FE) models were established by using the ABAQUS FE software for simulation analysis. According to the FE calculation results, the JC constitutive model was modified, and a Modified Johnson-Cook (MJC) constitutive model was adopted in this work. The strain rate and temperature multipliers of JC were coupled with HS and Swift models, and then the Taylor rod impact tests and the corresponding simulation calculation were conducted for verifying the effectiveness of three constitutive models. The results show that the JC model overestimated the stress flow behavior of 7050-T7351 aluminum alloy, while the predicted results by MJC constitutive model are in good agreement with the test. Both HS and Swift models can well reflect the stress flow behavior of the material under quasi-static conditions. The MJC model can also well predict the plastic deformation of the Taylor rods, while the modified models which couple the strain rate and temperature multiplier of JC with HS and Swift have relatively poor prediction accuracy.
Key words:  flow behavior    plastic deformation    SHPB    constitutive model    Taylor rod
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TG156  
基金资助: 中央高校基本科研业务费项目中国民航大学专项资助(3122019070)
通讯作者:  *huir@cauc.edu.cn,任光辉,中国民航大学副研究员。2015年于中国民航大学获得安全工程硕士。主要从事实验技术研究、实验室规划与建设和实验室可持续发展研究,在国内重要期刊发表文章5篇,主持和参与多项国家级及省部级项目。   
作者简介:  邓云飞,中国民航大学副教授。2012年于哈尔滨工业大学获得工学博士学位。主要从事航空器结构强度适航技术研究,重点研究材料和结构冲击动力学的实验与仿真技术,在国内外重要期刊发表文章50多篇,主持和参与10多项国家级及省部级项目。
引用本文:    
邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
DENG Yunfei, HU Ang, REN Guanghui, WEI Gang. Mechanical Properties Tests and Constitutive Model Research for 7050-T7351 Aluminum Alloy. Materials Reports, 2023, 37(3): 21060149-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060149  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21060149
1 Guo Z T, Gao B, Guo Z, et al.Journal of Explosion and Shock, 2018, 38(4), 804 (in Chinese).
郭子涛, 高斌, 郭钊, 等. 爆炸与冲击, 2018, 38(4), 804.
2 Deng Y F, Li J F, Meng F Z.Journal of Mechanical Engineering, 2015, 51(17), 66 (in Chinese).
邓云飞, 李剑峰, 孟凡柱. 机械工程学报, 2015, 51(17), 66.
3 Lou Y. Cryogenic impact microstructure evolution and mechanical properties of pure iron, Q235 steel and 5083 aluminum alloy. Master’s Thesis, Zhejiang University, China, 2019 (in Chinese).
楼圆. 纯铁、Q235钢和5083铝合金深冷冲击微结构演变与力学性能研究.硕士学位论文, 浙江大学, 2019.
4 Zhang W, Xiao X L, Guo Z T, et al.Journal of High Pressure Physics, 2012, 26(2), 163 (in Chinese).
张伟, 肖新科, 郭子涛, 等. 高压物理学报, 2012, 26(2), 163.
5 Gao N. 5083 aluminum alloy wide strain rate pull-down compressive pro-perties and constitutive model description. Master’s Thesis, Southwest Jiaotong University, China, 2016 (in Chinese).
高宁. 5083铝合金宽应变率下拉压力学性能及其本构模型描述.硕士学位论文, 西南交通大学, 2016.
6 Gu R, Wang Q, Hou L, et al.Journal of Experimental Mechanics, 2014, 29(5), 543 (in Chinese).
顾然, 王强, 侯亮, 等. 试验力学, 2014, 29(5), 543.
7 Johnson G R, Cook W H. In: Proceedings of the Seventh International Symposium on Ballistics, Hague, 1983, pp. 541.
8 Sung J H, Kim J H, Wagoner R H.International Journal of Plasticity, 2010, 26, 1746.
9 Xiao X K, Hao P, Bai Y L.International Journal of Impact Engineering, 2019, 123, 26.
10 Xiao X K, Mu Z C, Pan H, et al.International Journal of Impact Engineering, 2018, 120, 185.
11 Deng Y F, Zhang Y, Zeng X Z, et al.Journal of Mechanical Engineering, 2020, 56(18),81 (in Chinese).
邓云飞, 张永, 曾宪智, 等. 机械工程学报, 2020, 56(18), 81.
12 Zhang W, Wei G, Xiao X K.Journal of Ordnance Engineering, 2013, 34(3), 276 (in Chinese).
张伟, 魏刚, 肖新科.兵工学报, 2013, 34(3), 276.
13 Wang X J.Journal of Aviation Precision Manufacturing Technology, 2017, 53(3), 26 (in Chinese).
王新建.航空精密制造技术, 2017, 53(3), 26.
14 Lee W S, Lin C F.Materials Science and Engineering, 1998, 241(1/2), 48.
15 Feng Z Y, Li H H, Liu Y, et al.Material Reports B: Research Papers, 2020, 34(6),12088 (in Chinese).
冯振宇, 李恒晖, 刘义,等. 材料导报:研究篇, 2020, 34(6), 12088.
16 Zhang W, Xiao X K, Wei G.Journal of Explosion and Shock, 2011, 31(1), 81 (in Chinese).
张伟, 肖新科, 魏刚.爆炸与冲击, 2011, 31(1), 81.
17 Xie C J, Tong M B, Liu F, et al.Journal of Vibration and Shock, 2014, 33(18), 110 (in Chinese).
谢灿军, 童明波, 刘富, 等.振动与冲击, 2014, 33(18), 110.
18 Xiao X K. Penetration resistance of double-layer metal target and deformation and fracture of Taylor rod. Ph.D. Thesis, Harbin Institute of Techno-logy, China, 2010(in Chinese).
肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂. 博士学位论文, 哈尔滨工业大学, 2010.
19 Jiao B Y. Research and application of Weldox 900 steel constitutive model and fracture criterion. Master’s Thesis, Zhengzhou University, China,2019 (in Chinese).
焦炳银. Weldox 900钢本构模型和断裂准则的研究及应用. 硕士学位论文, 郑州大学, 2019.
20 Xiao X K, Wang Y P, Vladislav V V, et al.International Journal of Impact Engineering, 2019, 128, 46.
21 Deng Y F, Zhang Y, Wu H P, et al.Journal of Mechanical Engineering, 2020, 56(20), 74 (in Chinese).
邓云飞, 张永, 吴华鹏, 等. 机械工程学报, 2020, 56(20), 74.
[1] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[2] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[3] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[4] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[5] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[6] 汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
[7] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[8] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[9] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[10] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[11] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[12] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[13] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[14] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[15] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed