Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20110267-8    https://doi.org/10.11896/cldb.20110267
  金属与金属基复合材料 |
ODS钢在热加工过程中纳米氧化物演化行为的研究进展
汪建强1,2,3, 徐斌1,3, 谢碧君1,3, 张健杨1,3, 孙明月1,3
1 中国科学院金属研究所核材料与安全评价重点实验室,沈阳 110016
2 中国科学技术大学材料科学与工程学院,合肥 230026
3 中国科学院金属研究所材料科学沈阳国家实验室,沈阳 110016
Nano-oxides Evolvement in ODS Steel During Thermo-Mechanical Processing: a Review
WANG Jianqiang1,2,3, XU Bin1,3, XIE Bijun1,3, ZHANG Jianyang1,3, SUN Mingyue1,3
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 16131KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与第二、三代核能系统相比,第四代核能系统和核聚变堆的运行温度更高、辐照剂量更强以及腐蚀环境更为严苛,因此开发高性能核电材料迫在眉睫。氧化物弥散强化(Oxide dispersion strengthened, ODS)钢含有高密度的弥散纳米氧化物和空位尾闾,使其具有优异的抗高温蠕变和抗辐照肿胀的性能,因此被认为是第四代核裂变堆包壳管和核聚变堆包层结构最有前景的候选材料之一。
ODS钢优异的性能源于其独特的微观组织结构,尤其是弥散分布的纳米氧化物。在热变形过程中,纳米氧化物形态变化不大,但在冷变形过程中,纳米氧化物会发生明显的塑性变形,后续的高温退火处理使其溶解再析出。合理调控合金元素可以提高纳米氧化物的稳定性和减小纳米氧化物尺寸,但晶界与纳米氧化物的相互作用会使纳米氧化物丧失界面关系而加速粗化,并且在晶界附近区域会出现无析出区。由于ODS钢中纳米氧化物的演化行为复杂,调控纳米氧化物的尺寸和弥散分布程度仍有待进一步研究。
本文归纳了ODS钢在热加工过程中纳米氧化物演化行为的研究进展,分别对纳米氧化物的塑性变形机制、纳米氧化物的溶解再析出机制、纳米氧化物的热稳定性和纳米氧化物与晶界的相互作用进行了总结及分析,并对存在的问题进行了总结和展望,以期为ODS钢在第四代核能系统包壳管和核聚变堆包层结构中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪建强
徐斌
谢碧君
张健杨
孙明月
关键词:  ODS钢  纳米氧化物  演变机制  塑性变形  稳定性    
Abstract: Compared to the second and third generation nuclear power systems, the fourth generation nuclear systems and fusion reactors have higher operating temperature and irradiation dose, and harsher chemical corrosion environment. The development of high-performance nuclear power materials is one of the key factors to promote the development of nuclear energy. Oxide dispersion strengthened (ODS) steel contains high-density dispersed nano-oxides and vacancy sinks, exhibiting excellent high-temperature creep performance and irradiation swelling resistance. Therefore, ODS steel has been considered as one of the most promising materials for fourth-generation nuclear fission reactor cladding tube and nuclear fusion reactor blanket.
The excellent properties of ODS steel are derived from its unique microstructure, especially dispersed nano-oxides. Nano-oxides change little during thermal deformation, but nano-oxides undergo obvious plastic deformation during cold deformation, which can be dissolved and then precipitated after high temperature annealing treatment. Reasonable control of alloying elements can improve the stability and reduce the size of nano-oxides, but the interaction between grain boundaries and nano-oxides causes nano-oxides to lose the interface relationship and accelerate coarsening, and there is precipitate free zone near the grain boundaries. Due to the complex evolution mechanisms of nano-oxides in ODS steel, the control of the size and the dispersion degree of nano-oxides deserves further study.
This paper reviews the research progress on evolution mechanisms of nano-oxides in ODS steel during thermo-mechanical processing. Plastic deformation mechanism, dissolution and then reprecipitation mechanism, high-temperature stability and interaction between nano-oxides and grain boundary of nano-oxides are analyzed and summarized, respectively. Then, existing problems are pointed out, ending with a conclusion and prospect. It is expected to provide a reference for the application of ODS steel in the fourth-generation nuclear energy system cladding tube and fusion reactor cladding blanket.
Key words:  ODS steel    nano-oxides    evolution mechanism    plastic deformation    stability
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TG142.1  
基金资助: 国家重点研究开发项目(2018YFA0702900);国家自然科学基金项目(51774265);国家科技重大专项(2019ZX06004010);中国科学院战略性先导科技专项(XDC04000000);中核集团领创项目;中国科学院跨学科创新团队和中国科学院青年创新促进会项目;兴辽英才百千万人才工程领军人才项目
通讯作者:  mysun@imr.ac.cn   
作者简介:  汪建强,2019年6月毕业于大连交通大学,获得工学硕士学位。现为中国科学技术大学材料科学与工程学院(中国科学院金属研究所)博士研究生,在孙明月研究员的指导下进行研究。目前主要研究领域为大尺寸ODS钢构筑成形技术。
孙明月,中国科学院金属研究所先进钢铁材料研究部研究员、博士研究生导师。2003年本科毕业于重庆大学,2009年在中国科学院金属研究所取得博士学位。担任国家重大专项项目负责人、国家重点研发计划课题负责人,入选科技部“创新人才推进计划重点领域创新团队”核心成员、辽宁省百千万人才工程“百层次”人才、辽宁省“兴辽英才”计划领军人才,山东省“泰山产业领军人才”等。荣获辽宁省技术发明一等奖、陈嘉庚青年科学家奖励、中国金属学会冶金青年科技奖、中国科学院青年科学家奖、中国科学院卢嘉锡青年科技奖等10余项奖励。主要从事特殊钢与大锻件均质化成形的研究工作,提出了金属构筑成形技术,通过金属构筑成形技术解决了大铸锭凝固过程的尺寸效应问题,开创了大尺寸构件新型制造学科方向。在国内外期刊上发表论文60余篇,授权发明专利50余项。
引用本文:    
汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
WANG Jianqiang, XU Bin, XIE Bijun, ZHANG Jianyang, SUN Mingyue. Nano-oxides Evolvement in ODS Steel During Thermo-Mechanical Processing: a Review. Materials Reports, 2022, 36(19): 20110267-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110267  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20110267
1 Zinkle S J, Was G S. Acta Materialia, 2013, 61(3), 735.
2 Chu S, Majumdar A. Nature, 2012, 488(7411), 294.
3 Chen L Z, Zhou Z J, Schroer C. Materials Reports, 2020, 34(5), 5096(in Chinese).
陈灵芝, 周张健, Schroer C.材料导报, 2020, 34(5), 5096.
4 Was G S, Petti D, Ukai S, et al. Journal of Nuclear Materials, 2019, 527, 151837.
5 Zhu H L, Wei T, Robert H, et al. Development of oxide dispersion streng-thened steels for high temperature nuclear structural applications, Springer, London, 2012.
6 Huet J J. Powder Metallurgy, 1967, 10, 208.
7 Fischer J J. US patent, US4075010, 1978.
8 Zinkle S J, Snead L L. Annual Review of Materials Research, 2014, 44(1), 241.
9 Zinkle S J. Fusion Science and Technology, 2017, 64(2), 65.
10 Dou P, Qiu L, Jiang S, et al. Journal of Nuclear Materials, 2019, 523, 320.
11 Edmondson P D, Parish C M, Zhang Y, et al. Journal of Nuclear Mate-rials, 2013, 434(1-3), 210.
12 Edmondson P D, Parish C M, Zhang Y, et al. Scripta Materialia, 2011, 65(8), 731.
13 Li Q, Parish C M, Powers K A, et al. Journal of Nuclear Materials, 2014, 445(1-3), 165.
14 Odette G R. Scripta Materialia, 2018, 143, 142.
15 Odette G R, Hoelzer D T. Journal of the Minerals Metals & Materials Society, 2010, 62(9), 84.
16 Stan T, Wu Y, Ciston J, et al. Acta Materialia, 2020, 183, 484.
17 Lu C Y, Lu Z, Xie R, et al. Journal of Nuclear Materials, 2016, 474, 65.
18 Hirata A, Fujita T, Wen Y R, et al. Nature Materials, 2011, 10(12), 922.
19 Darling K A, Rajagopalan M, Komarasamy M, et al. Nature, 2016, 537(7620), 378.
20 Ukai S, Harada M, Okada H, et al. Journal of Nuclear Materials, 1993, 204, 65.
21 Alinger M J, Odette G R, Hoelzer D T. Acta Materialia, 2009, 57(2), 392.
22 London A J, Santra S, Amirthapandian S, et al. Acta Materialia, 2015, 97, 223.
23 Shen J, Yang H, Li Y, et al. Journal of Alloys & Compounds, 2017, 695, 1946.
24 Sakasegawa H, Legendre F, Boulanger L, et al. Journal of Nuclear Materials, 2011, 417(1-3), 229.
25 Thual M A, Ribis J, Baudin T, et al. Scripta Materialia, 2017, 136, 37.
26 Deschamps A, De Geuser F, Malaplate J, et al. Journal of Nuclear Materials, 2017, 482, 83.
27 Spartacus G, Malaplate J, Geuser F D, et al. Scripta Materialia, 2020, 188, 10.
28 Zhang Z B, Pantleon W. Acta Materialia, 2018, 149, 235.
29 Mo K, Zhou Z J, Miao Y B, et al. Journal of Nuclear Materials, 2014, 455(1-3), 376.
30 Aydogan E, El-Atwani O, Takajo S, et al. Acta Materialia, 2018, 148, 467.
31 Li F, Li L, Fang Q, et al. Journal of Materials Science, 2020, 55(27), 13414.
32 Hary B, Logé R, Ribis J, et al. Materialia, 2018, 4, 444.
33 Mao X, Oh K H, Jang J. Materials Characterization, 2016, 117, 91.
34 Bouchaud E, Bouchaud J P, Naka S, et al. Acta Metallurgica et Materialia, 1992, 40(12), 3451.
35 Zhao Q, Yu L, Ma Z, et al. Materials, 2018, 11(6), 1044.
36 Onaka S, Kobayashi N, Fujii T, et al. Materials Science & Engineering A, 2003, 347(1-2), 42.
37 Ribis J, Carlan Y D. Acta Materialia, 2012, 60(1), 238.
38 Litvinov D, Chauhan A, Gräning T, et al. Materialia, 2019, 5, 100176.
39 Dawson K, Tatlock G J. Journal of Nuclear Materials, 2017, 486, 361.
40 Tsuchiyama T, Yamamoto S, Hata S, et al. Acta Materialia, 2016, 113, 48.
41 Hutchinson C R, Loo P T, Bastow T J,et al. Acta Materialia, 2009, 57(19), 5645.
42 Aydogan E, Maloy S A, Anderoglu O, et al. Acta Materialia, 2017, 134, 116.
43 Miller M K, Parish C M, Bei H. Journal of Nuclear Materials, 2015, 462, 422.
44 Dawson K, Cater S, Tatlock G J, et al. Materials Science and Technology, 2014, 30(13), 1685.
45 Wu Y, Haney E M, Cunningham N J, et al. Acta Materialia, 2012, 60(8), 3456.
46 Sallez N, Hatzoglou C, Delabrouille F, et al. Journal of Nuclear Mate-rials, 2016, 472, 118.
47 Takahashi A, Chen Z Z, Ghoniem N, et al. Journal of Nuclear Materials, 2011, 417(1-3), 1098.
48 Gao R, Zhang T, Ding H L, et al. Journal of Nuclear Materials, 2015, 465, 268.
49 Castro V D, Marquis E A, Lozano-Perez S, et al. Acta Materialia, 2011, 59(10), 3927.
50 Zhao Q, Ma Z Q, Yu L M, et al. Journal of Materials Science & Techno-logy, 2019, 35(6), 1064.
51 Miller M K, Parish C M, Li Q. Materials Science and Technology, 2013, 29(10), 1174.
52 Lescoat M L, Ribis J, Gentils A, et al. Journal of Nuclear Materials, 2012, 428(1-3), 176.
53 Zhong S Y, Ribis J, Lochet N, et al. Journal of Nuclear Materials, 2014, 455(1-3), 618.
54 London A J, Santra S, Amirthapandian S, et al. Acta Materialia, 2015, 97, 223.
55 Unifantowicz P, Płociński T, Williams C A, et al. Journal of Nuclear Materials, 2013, 442(1-3), S158.
56 Zhong S Y, Ribis J, Lochet N, et al. Metallurgical and Materials Tran-sactions A, 2014, 46(3), 1413.
57 Zhang G M, Zhou Z J, Mo K, et al. Journal of Nuclear Materials, 2019, 522, 212.
58 Zheng P, Li Y, Zhang J, et al. Materials Science and Engineering A, 2020, 783,139292.
59 Cunningham N, Wu Y, Klingensmith D, et al. Materials Science and Engineering, A, 2014, 613, 296.
60 Miller M K, Hoelzer D T, Kenik E A, et al. Journal of Nuclear Mate-rials, 2004, 329-333,338.
61 Mao X, Kim T K, Kim S S, et al. Journal of Nuclear Materials, 2012, 428(1-3), 82.
62 Hoelzer D T, Pint B A, Wright I G. Journal of Nuclear Materials, 2000, 283, 1306.
63 Kloss B, Wenderoth M, Glatzel U, et al. Oxidation of Metals, 2004, 61(3-4), 239.
64 Pimentel G, Chao J, Capdevila C. Journal of the Minerals Metals & Materials Society, 2014, 66(5), 780.
65 Leo J R O, Moturu S R, Fitzpatrick M E. Journal of Materials Research and Technology, 2019, 8(5), 3719.
66 Jaumier T, Vincent S, Vincent L, et al. Journal of Nuclear Materials, 2019, 518, 274.
67 Zhang Z B, Tao N R, Mishin O V, et al. Journal of Materials Science, 2016, 51(11), 5545.
68 Sornin D L, Karch A, Loge R E. Journal of Materials Science, 2018, 53(4), 2965.
69 Lu C, Lu Z, Wang X, et al. Scientific Reports, 2017, 7, 40343.
70 Das A, Chekhonin P, Altstadt E, et al. Journal of Nuclear Materials, 2020, 533,152083.
71 Naka S, Octor H, Bouchaud E, et al. Scripta Metallurgica, 1989, 23(4), 501.
[1] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[2] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[3] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[4] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[5] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[6] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[7] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[8] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[9] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[10] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[11] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[12] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[13] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[14] 王超, 严铮洸, 肖家文. 应变工程对钙钛矿材料光电性质和稳定性的调制[J]. 材料导报, 2022, 36(17): 20070095-9.
[15] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed