Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20110088-10    https://doi.org/10.11896/cldb.20110088
  无机非金属及其复合材料 |
骨料特性影响混凝土体积稳定性的研究进展
楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军
安徽建筑大学,安徽省先进建筑材料重点实验室, 合肥 230022
Research Progress on the Influence of Aggregate Characteristics on the Volume Stability of Concrete
CHU Yingjie, WANG Aiguo, SUN Daosheng, LIU Kaiwei, MA Rui, WU Xiusheng, HAO Fajun
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
下载:  全 文 ( PDF ) ( 5994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提升混凝土体积稳定性是提高现代混凝土耐久性、实现高性能化的重要研究内容,也是亟待解决的关键问题。骨料特性是影响混凝土体积稳定性的重要因素之一。骨料形态、级配、矿物组成、孔隙结构、弹性模量和热学性能均会从不同角度影响混凝土的体积稳定性。过去的工作大多集中在骨料某个或某几个特性对混凝土体积稳定性的影响,未能充分阐明骨料特性对现代混凝土体积稳定性的影响机制。随着天然骨料的日趋短缺以及人造骨料技术的逐渐提升,利用工业废渣制备人造骨料是实现混凝土可持续发展的另一途径。对人造功能骨料进行组成、结构与功能设计与制备,不仅可通过骨料特性改善混凝土的性能,还可减少建设工程对天然骨料的依赖,拓宽骨料来源,并为工业废渣资源化处理提供新思路,是促进现代混凝土工业可持续发展的关键举措。
本文综述了骨料不同特性(如骨料形态、级配、矿物组成、孔隙结构、弹性模量和热学性能等)对混凝土体积稳定性的影响,阐明了骨料特性与混凝土体积稳定性的映射关系,阐述了骨料特性的单一作用及共同作用对现代混凝土体积稳定性的影响机制。并从骨料角度入手,提出了通过降低混凝土的热膨胀系数、调整混凝土内部相对湿度和改善界面过渡区特性等方法提升混凝土体积稳定性的措施。同时也对功能型人造废渣骨料的设计与制备进行了归纳与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
楚英杰
王爱国
孙道胜
刘开伟
马瑞
吴修胜
郝发军
关键词:  骨料特性  现代混凝土  体积稳定性  提升技术    
Abstract: Improving the volume stability of concrete is an important research content for improving the durability of modern concrete and realizing high performance, and it is also a key issue to be solved urgently. Aggregate characteristics are one of the most important factors affecting volume stability of concrete. The shape, gradation, mineral composition, pore structure, elastic modulus and thermal properties of aggregate will influence the volume stability of concrete from different angles. Previous work mostly focused on the influence of one or several characteristics of aggregate on the volume stability of concrete, but failed to explain the influence mechanism of aggregate characteristics on the volume stability of modern concrete. With the increasing shortage of natural aggregates and the gradual improvement of artificial aggregate technology, using industrial waste residue to prepare artificial aggregate is another way to realize the sustainable development of concrete. The design and preparation of composition, structure and function of artificial functional aggregates can not only improve the performance of concrete through the characteristics of aggregates, but also reduce the dependence of construction projects on natural aggregates, broaden the sources of aggregates and provide resources for industrial waste treatment. This new idea is a key measure to promote the sustainable development of the modern concrete industry.
In this paper, the effects of different aggregate properties (such as aggregate shape, gradation, mineral composition, pore structure, elastic modulus and thermal properties) on the volume stability of concrete are summarized. The mapping relationship between aggregate properties and volume stability of concrete is clarified. The influence mechanism of single and combined effect of aggregate properties on the volume stability of modern concrete is expounded. From the point of view of aggregates, some methods are proposed to improve the volume stability of concrete, such as reducing the thermal expansion coefficient of concrete, adjusting the relative humidity inside concrete and improving the characteristics of the interface transition zone. At the same time, the design and preparation of functional artificial waste residue aggregates are summarized and prospected.
Key words:  aggregate characteristics    modern concrete    volume stability    lifting technology
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528.041  
基金资助: 安徽省重点研究与开发计划项目(202004b11020033);国家自然科学基金(51778003;52078002)
通讯作者:  wag3134@126.com   
作者简介:  楚英杰, 2021年6月毕业于安徽建筑大学,获得硕士学位。研究方向为高性能水泥基材料、海工混凝土。
王爱国,安徽建筑大学,教授,硕士研究生导师。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland, Centre for Future Materials做访问学者。主持国家自然科学基金项目、安徽省重点研发计划等省部级以上项目10余项。Cement and Concrete CompositesComposites Part B: Engineering、Construction and Building Materials、《材料导报》和《硅酸盐通报》等学术期刊审稿人,中国建筑学会建筑材料分会理事会理事,中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
引用本文:    
楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
CHU Yingjie, WANG Aiguo, SUN Daosheng, LIU Kaiwei, MA Rui, WU Xiusheng, HAO Fajun. Research Progress on the Influence of Aggregate Characteristics on the Volume Stability of Concrete. Materials Reports, 2022, 36(5): 20110088-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110088  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20110088
1 Liu J, Yu C, Shu X, et al. Cement and Concrete Research, 2019, 124, 105834.
2 Chunping Gu, Yicong Wang, Fan Gao, et al. Construction and Building Materials, 2019, 197, 766.
3 Ellis Gartner, Tongbo Sui. Cement and Concrete Research,2018,114,27.
4 Yang K, Zhong M Q, Magee B, et al. Construction and Building Mate-rials, 2017, 144, 279.
5 Zhuang Y Z, Zheng D D, Ng Z, et al. Construction and Building Mate-rials, 2016, 120, 373.
6 Maruyama I, Teramoto A. Cement and Concrete Research, 2013, 50, 41.
7 Zhang J, Hou D W, Han Y D. Construction and Building Materials, 2012, 29, 230.
8 Zhang J, Han Y D, Gao Y, et al. Drying Technology, 2013, 31(5), 565.
9 Shen D J, Liu K Q, Ji Y, et al. Magazine of Concrete Research, 2017, 70(14), 1.
10 Shen D J, Yang Q, Huang C B, et al. Construction and Building Mate-rials, 2019, 209, 508.
11 Pierre Claude Aïtcin. Cement and Concrete Research, 2000, 30, 1349.
12 Yoo S W, Kwon S J, Jung S H. Construction and Building Materials, 2012, 34, 1.
13 Zhutovsky S, Kovler K. Cement and Concrete Research, 2012, 42(1), 20.
14 Eiichi Tazawa, Shingo Miyazawa. Cement and Concrete Research, 1995, 25(8), 1633.
15 Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials, McGraw-Hill Professional, USA, 2014.
16 Ahmad S, Alghamdi S A. Arabian Journal for Science and Engineering, 2012, 37(7), 1777.
17 Joo Hyung Kim, Seul Woo Choi, Kwang Myong Lee, et al. Construction and Building Materials, 2018, 192, 50.
18 Hans Beushausen, Thomas Dittmer. Construction and Building Materials, 2015, 74, 132.
19 Neville A M. Properties of concrete (5th Edition), Prentice Hall, USA, 2011.
20 Wang Y H. Study on high-temperature behaviours of FRHPC pipe members. Ph.D. Thesis, Dalian University of Technology, China, 2008(in Chinese).
王岳华. 纤维高性能混凝土筒体构件高温性能研究. 博士学位论文, 大连理工大学, 2008.
21 Siddiqui M S, Grasley Z, Fowler D W. Construction and Building Mate-rials, 2016, 112, 996.
22 Yao W. Industrial Construction, 2005, 35(11), 74(in Chinese).
姚武. 工业建筑, 2005, 35(11), 74.
23 Go Igarashi,Ippei Maruyama, Yukiko Nishioka, et al. Construction and Building Materials, 2015, 94, 701.
24 Lukefahr E, Du L. Journal of Testing and Evaluation, 2010, 38(6), 683.
25 Naik T, Kraus R, Kumar R. Journal of Materials in Civil Engineering, 2011, 23(4), 467.
26 Li G W. Journal of Hydroelectric Engineering, 2010, 29(5), 98(in Chinese).
李光伟. 水力发电学报, 2010, 29(5), 98.
27 Qian C X, Zhu C F. Journal of the Chinese Ceramic Society, 2009, 37(1), 18(in Chinese).
钱春香, 朱晨峰. 硅酸盐学报, 2009, 37(1), 18.
28 Shi Y, Peng S S, Dong Y, et al. Journal of Yangtze River Scientific Research Institute, 2013, 30(11), 83(in Chinese).
石妍, 彭尚仕, 董芸, 等. 长江科学院院报, 2013, 30(11), 83.
29 Sancak E, Sari Y D, Simsek O. Cement and Concrete Composites, 2008, 30(8), 715.
30 Lura P. Autogenous deformation and internal curing of concrete. Ph.D. Thesis, Delft University of Technology, Netherlands, 2003.
31 Gandage A S, Rao V R V, Sivakumar M V N, et al. Procedia-Social and Behavioral Sciences, 2013, 104, 188.
32 Kodur V K R, Sultan M A. Journal of Materials in Civil Engineering, 2003, 15(2), 101.
33 Harmathy T Z. Journal of Materials, 1970, 5, 47.
34 Xu G L, Shen W G, Fang D, et al. Construction and Building Materials, 2020, 261, 120002.
35 Grabiec A M, Zawal D, Szulc J. Construction and Building Materials, 2015, 98, 17.
36 Li P P, Yu Q L, Brouwers H J H. Construction and Building Materials, 2018, 170, 649.
37 Yoo D Y, Banthia N. Cement and Concrete Composites, 2016, 73, 267.
38 Han Y D. Studies and controls on shrinkage of modern concrete.Ph.D. Thesis, Tsinghua University, China, 2014(in Chinese).
韩宇栋. 现代混凝土收缩调控研究. 博士学位论文,清华大学,2014.
39 Semsettin Kılınçarslan. International Journal of Physical Sciences, 2011, 6(13), 3041.
40 Hossain K M A, Ahmed S, Lachemi M. Construction and Building Materials, 2011, 25(3), 1186.
41 Lura P, Bisschop J. Cement and Concrete Composites,2004,26(5),445.
42 Pericles S, Petrou M F. Construction and Building Materials, 2018, 179, 80.
43 Wang A G. Effect of morphology and pore structure of aggregate on volumestability and mechanical property of pavement concrete. Ph.D. Thesis, Nanjing Tech University, China, 2010(in Chinese).
王爱国. 骨料形态与孔隙对道面混凝土变形和力学性能的影响. 博士学位论文, 南京工业大学, 2010.
44 Ma X W, Liu J H, Shi C J. Construction and Building Materials, 2019, 218, 385.
45 Wang L C, Zhang L. Journal of Building Materials, 2020, 23(6), 1471(in Chinese).
王立成, 张磊. 建筑材料学报, 2020, 23(6), 1471.
46 Cusson D, Hoogeveen T. Cement and Concrete Research, 2008, 38(6), 757.
47 Wang A G, Lyu B C, Zhang Z H, et al. Construction and Building Materials, 2018, 187, 1004.
48 Liu K Z, Yu R, Shui Z H. Construction and Building Materials, 2020, 252, 119111.
49 Ghourchian S, Wyrzykowski M, Lura P, et al. Construction and Building Materials, 2013, 40, 135.
50 Domingo Cabo A, Lázaro C,López Gayarre F, et al. Construction and Building Materials, 2009, 23(7), 2545.
51 Fathifazl G, Razaqpur A G, Isgor O B, et al. Cement and Concrete Composites, 2011, 33(10), 1026.
52 Bendimerad A Z, Delsaute B, Rozière E, et al. Construction and Buil-ding Materials, 2020, 233, 117340.
53 Henkensiefken R, Bentz D, Nantung T, et al. Cement and Concrete Composites, 2009, 31(7), 427.
54 Bentz D P, Snyder K A. Cement and Concrete Research, 1999, 29(11), 1863.
55 Kohno K, Okamoto T, Isikawa Y, et al. Cement and Concrete Research, 1999, 29(4), 611.
56 Zhutovsky S, Kovler K, Bentur A. Cement and Concrete Research, 2011, 41(9), 981.
57 Jensen O M, Lura P. Materials and Structures, 2006, 39(9), 817.
58 Zhang S J. Water absorption and desorption behavior of recycled aggregate and its effect on concrete shrinkage. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2019(in Chinese).
张士杰. 再生骨料吸水返水特性及其对混凝土收缩的影响. 硕士学位论文, 北京建筑大学, 2019.
59 Yao W. Journal of Tongji University(Natural Science), 2007, 35(5), 649(in Chinese).
姚武. 同济大学学报(自然科学版), 2007, 35(5), 649.
60 Tayfun Uygunoğlu, Ilker Bekir Topçu. Construction and Building Mate-rials, 2009, 23(9), 3063.
61 Cagnon H, Vidal T, Sellier A, et al. Cement and Concrete Composites, 2016, 71, 131.
62 Huang J, Wu S X, Sheng D J. Structural Engineers, 2010, 26(3), 154(in Chinese).
黄杰, 吴胜兴, 沈德建. 结构工程师, 2010, 26(3), 154.
63 Sang D.Preparation and application performance study of porous low thermal expansion conefficient functional aggregate. Master's Thesis, Anhui Jianzhu University, China, 2016(in Chinese).
桑迪. 多孔低热膨胀系数功能骨料的制备及应用性能研究. 硕士学位论文, 安徽建筑大学, 2016.
64 Wu X S.Study on thermal expansion coefficient of cement concrete based on the theory of Multiphase inclusion. Master's Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
吴小双. 基于多相夹杂理论的水泥混凝土热膨胀系数研究. 硕士学位论文, 哈尔滨工业大学, 2016.
65 Grasley Z C, Lange D A. Materials and Structures, 2007, 40(3), 311.
66 Yeon J H, Choi S, Won M C. Construction and Building Materials, 2013, 38, 306.
67 Maruyama I, Teramoto A. Cement and Concrete Composites, 2012, 34(10), 1124.
68 Orosz K, Hedlund H, Cwirzen A. Construction and Building Materials, 2017, 149, 474.
69 Maruyama I, Teramoto A. Cement and Concrete Research, 2011, 41(4), 380.
70 Gao P, Chen Y, Huang H L, et al. Cement and Concrete Composites, 2020, 114, 103786.
71 Ruan X, Li Y, Jin Z R, et al. Journal of Tongji University(Natural Science), 2018, 46(5), 604(in Chinese).
阮欣, 李越, 金泽人, 等. 同济大学学报(自然科学版), 2018, 46(5), 604.
72 Zhou Y L, Jin H, Wang B L. Construction and Building Materials, 2019, 228, 116785.
73 Sadjad Naderi, Wenlin Tu, Mingzhong Zhang. Cement and Concrete Research, 2021, 140, 106317.
74 Alexander M G, Mindess S. Aggregates in concrete (Modern Concrete Technology), UK, Routledge, 2005.
75 Henkensiefken R, Castro J, Bentz D, et al. Cement and Concrete Research, 2009, 39(10), 883.
76 Yang J J, Dong Y L, Hai R, et al. China Concrete and Cement Pro-ducts, 2003(6), 1(in Chinese).
杨久俊, 董延玲, 海然, 等. 混凝土与水泥制品, 2003(6), 1.
77 Ke Y, Ortola S,Beaucour A L, et al. Cement and Concrete Research, 2010, 40(11), 1590.
78 王发洲, 杨婷婷, 胡曙光, 等. 中国专利, CN102849970A, 2013.
79 Kong L, Hou L, Du Y. Construction and Building Materials,2014,64,22.
80 Dang Y D.Influence of shrinkage reducing admixture and internal curing on volume stability of cement based materials. Ph.D. Thesis, Chongqing University, China, 2012(in Chinese).
党玉栋. 减缩剂与内养护对水泥基材料体积稳定性的影响. 博士学位论文, 重庆大学, 2012.
81 Ghafari E, Ghahari S A, Costa H, et al. Construction and Building Materials, 2016, 127, 43.
82 Han Y D , Zhang J, Luosun Y M, et al. Construction and Building Materials, 2014, 61, 41.
83 Bentz D P, Lura P, Roberts J W. Concrete International,2005,27(2),35.
84 Kang S H, Hong S G, Moon J. Cement and Concrete Research, 2018, 108, 20.
85 Bentur A, Igarashi S I, Kovler K. Cement and Concrete Research, 2001, 31(11), 1587.
86 Liu J H, Shi C J, Ma X W, et al. Construction and Building Materials, 2017, 146, 702.
87 Ding Y B. A study on self-curing for high-performance concrete. Master's Thesis, Hefei University of Technology, China, 2006(in Chinese).
丁以兵. 高性能混凝土自养护研究. 硕士学位论文, 合肥工业大学, 2006.
88 Kong X M, Zhang Z L, Lu Z C. Materials and Structures, 2015, 48(9), 2741.
89 Shen D J, Feng Z Z, Zhu P F, et al. Construction and Building Mate-rials, 2020, 258, 119151.
90 Lv Yang, Ye Guang, Geert De Schutter. Construction and Building Materials, 2019, 198, 669.
91 Castro J, Keiser L, Golias M, et al. Cement and Concrete Composites, 2011, 33(10), 1001.
92 Zhang J, Wang J, Ding X. Engineering Fracture Mechanics,2018,192,54.
93 Wang X F, Fang C, Kuang W Q, et al. Construction and Building Materials, 2017, 136, 173.
94 Golias M, Castro J, Weiss J. Construction and Building Materials, 2012, 35, 52.
95 Yi S Q, Liu K Z, Qiu J, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 2506(in Chinese).
易双秦, 刘开志, 邱晶, 等. 硅酸盐通报, 2019, 38(8), 2506.
96 Han Y D, Zhang J, Wang Z B. Journal of the Chinese Ceramic Society, 2013, 41(8), 1070(in Chinese).
韩宇栋, 张君, 王振波. 硅酸盐学报, 2013, 41(8), 1070.
97 Dong S H, Zhang B S, Ge Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(3), 465(in Chinese).
董淑慧, 张宝生, 葛勇, 等. 硅酸盐学报, 2009, 37(3), 465.
98 Shen D J, Jiang J L, ShenJ X, et al. Construction and Building Mate-rials, 2015, 99, 260.
99 Wang X F, Fang C, Kuang W Q, et al. Construction and Building Materials, 2017, 155, 867.
100 Zhutovsky S, Kovler K, Bentur A. Cement and Concrete Composites, 2004, 26(5), 499.
101 Dinghua Zou, Kun Li, Weidong Li, et al. Construction and Building Materials, 2018, 163, 949.
102 Akcay B, Tasdemir M A. Cement and Concrete Composites, 2010, 32(8), 611.
103 Bissonnette B, Pierre P, Pigeon M. Cement and Concrete Research, 1999, 29(10), 1655.
104 Liu Q. Study on the volume stability of coal gangue ceramsite lightweight aggregate concrete. Master's Thesis, Northeastern University, China, 2014(in Chinese).
刘骎. 煤矸石陶粒轻集料混凝土体积稳定性研究. 硕士学位论文, 东北大学, 2014.
105 Kim J, Kim J K, Lee C. Cement and Concrete Research,1999,29(12), 1921.
106 Wei Y, Zheng X B, Guo W Q. Journal of Building Materials, 2016, 19(5), 902(in Chinese).
魏亚, 郑小波, 郭为强. 建筑材料学报, 2016, 19(5), 902.
107 Wang J B. Study on preparation and performances of recycling concrete.Master's Thesis, University of Jinan, China, 2012(in Chinese).
王金邦. 可循环混凝土的制备及其性能研究. 硕士学位论文, 济南大学, 2012.
108 Hu S G. In: The 9th Academic Conference of the Department of Chemical Engineering, Metallurgy and Materials Engineering, Chinese Academy of Engineering. Xu Zhou, 2012, pp. 832.
胡曙光. 中国工程院化工、冶金与材料工程学部第九届学术会议. 徐州, 2012, pp. 832.
109 Tajra F, Elrahman M A, Stephan D. Construction and Building Mate-rials, 2019, 225, 29.
110 Strokova V, Zhernovsky I, Ogurtsova Y, et al. Advanced Powder Technology, 2014, 25, 1076.
111 Liu C B.Study on surface modification and the interfacial transition zone between ferrochromium slag lightweight aggregate and cement paste. Master's Thesis, Southwest University of Science and Technology, China, 2013(in Chinese).
刘川北. 碳铬渣基轻集料表面改性及其与水泥石界面性质研究. 硕士学位论文, 西南科技大学, 2013.
112 Sun P. Preparation of functional aggregate and its effect on volume deformation of cement-based materials. Master's Thesis, Anhui Jianzhu University, China, 2014(in Chinese).
孙鹏. 功能骨料制备及其对水泥基材料体积变形性能的影响. 硕士学位论文, 安徽建筑大学, 2014.
113 Hu S, Yang T, Wang F, et al. Materials Science Forum,2010,650,17.
[1] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[2] 王爱国, 楚英杰, 徐海燕, 刘开伟, 马瑞, 董伟伟, 孙道胜. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099.
[3] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[4] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed