Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20070095-9    https://doi.org/10.11896/cldb.20070095
  无机非金属及其复合材料 |
应变工程对钙钛矿材料光电性质和稳定性的调制
王超, 严铮洸, 肖家文*
北京工业大学材料与制造学部,固体微结构与性能研究所,固体微结构与性能北京市重点实验室,北京 100124
Modulating the Optoelectronic Properties and Stability of Perovskites by Strain Engineering
WANG Chao, YAN Zhengguang, XIAO Jiawen*
Beijing Key Lab of Microstructure and Property of Advanced Materials, Institute of Microstructure and Property of Advanced Materials,Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 6272KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 卤化物钙钛矿材料由于其优异的光电性质成为近几年的研究热点之一。钙钛矿太阳能电池的光电转换效率在短短几年内已超过25%,钙钛矿材料在光电二极管、光电探测器、激光器等光电器件中也表现出良好的应用前景。钙钛矿材料及器件性能和稳定性的进一步提高是研究人员重点关注的问题。各种改善钙钛矿材料的光电性质和稳定性的策略也被不断提出,如薄膜结晶控制、界面改性/缺陷钝化、组件工程、添加剂工程等。近年来,应变工程被发现可有效改善钙钛矿材料的光电性质和器件性能,为钙钛矿材料器件性能的优化提供了新的研究视角。本文从应力应变的基本概念入手,介绍了如何测量和评估钙钛矿材料的残余应力和应变、残余应力和应变如何影响钙钛矿材料的器件性能,以及总结了对钙钛矿材料施加应力和应变的策略,最后本文对应变工程改善钙钛矿材料的器件性能这一新的研究视角做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超
严铮洸
肖家文
关键词:  卤化物钙钛矿  应力-应变  稳定性  光电性质    
Abstract: Halide perovskite materials have been one of the hottest topics in recent years due to their excellent optoelectronic properties. This upsurge was initially caused by perovskite solar cells, whose power conversion efficiency has exceeded 25% in just a few years. The halide perovskite materials also show huge potential in light-emitting devices, photodetectors, lasers and other optoelectronic devices. The further improvement of perovskite materials and device performance and stability is the key issue of researchers. Various strategies to improve the optoelectronic properties and stability of perovskite materials have also been proposed, such as film crystallization control, interface modification/defect passivation, component engineering, additive engineering, etc. In recent years, strain engineering has been found to be able to effectively improve the optoelectronic properties and device performance of halide perovskites, which provides a novel avenue for the optimization of device performance of perovskite materials. In this review, we start with the basic concept of stress and strain, then describe how to measure and evaluate the residual stress and strain of perovskite materials, as well as how residual stress and strain affect the device performance and the underlying mechanism, and summarize the strategy of applying stress and strain to perovskite material. Finally, the new research perspective of strain engineering to improve the device performance of perovskite materials is prospected.
Key words:  halide perovskite    stress-strain    stability    optoelectronic property
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  O472  
基金资助: 国家自然科学基金(11674015;21701009);北京市卓越青年科学家项目(BJJWZYJH01201910005018)
通讯作者:  *xiaojw@bjut.edu.cn   
作者简介:  王超,硕士研究生。2019年本科毕业于北京化工大学材料科学与工程学院,2019年9月起于北京工业大学固体微结构与性能研究所攻读硕士学位。目前主要研究方向为卤化物钙钛矿器件的光电性能与稳定性研究。
肖家文,北京工业大学固体微结构与性能研究所,博士,副研究员。2010年7月本科毕业于北京师范大学化学学院,2015年7月在北京大学无机化学专业取得博士学位,2016—2019年在北京理工大学材料学院进行博士后研究工作。2019年5月入职北京工业大学固体微结构与性能研究所。长期从事贵金属、半导体纳米材料的溶液法合成及其光电性能、器件应用的研究。以第一作者在Advanced Energy Materials、Nano Energy、Nanoscale、Solar RRL、Chemistry-A European Journal等杂志上发表多篇论文,他引170余次。以合作者身份在JACS、ACS Nano、Small等杂志发表多篇论文。
引用本文:    
王超, 严铮洸, 肖家文. 应变工程对钙钛矿材料光电性质和稳定性的调制[J]. 材料导报, 2022, 36(17): 20070095-9.
WANG Chao, YAN Zhengguang, XIAO Jiawen. Modulating the Optoelectronic Properties and Stability of Perovskites by Strain Engineering. Materials Reports, 2022, 36(17): 20070095-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070095  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20070095
1 Graef M, Mchenry M E, Keppens V. Journal of the Acoustical Society of America, 2008, 124(3), 1385.
2 Forrester W F, Hinde R M. Nature, 1945, 156(3954), 177.
3 Bansal V, Poddar P, Ahmad A, et al. Journal of the American Chemical Society, 2006, 128(36), 11958.
4 Jin S, Tiefel T H, Mccormack M, et al. Science, 1994, 264(5157), 413.
5 Bednorz J G, Mueller K A Z. Zeitschrift für Physik B Condensed Matter, 1986, 64(2), 189.
6 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
7 Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467), 395.
8 Kebin L, Jun X, Li N Q. Nature, 2018,562, 245.
9 Su H, Jeong, Park M H, et al. Science, 2015, 350(6265), 1222.
10 Wang N, Cheng L, Ge R, et al. Nature Photonics, 2016, 10, 699.
11 Xiao Z, Kerner R A, Zhao L, et al. Nature Photonics, 2017, 11(2), 108.
12 Zhu H, Fu Y, Meng F, et al. Nature Materials, 2015, 14(6), 636.
13 Bao C, Chen Z, Fang Y, et al. Advanced Materials, 2017,3, 209.
14 Wei H, Fang Y, Mulligan P, et al. Nature Photonics, 2016, 10, 333.
15 Im J H, Jang I H, Pellet N, et al. Nature Nanotechnology, 2014, 9(11), 927.
16 Fu P F, Tang J, Xiao Z W, et al. Frontiers of Optoelectronics, 2021, 14(2), 252.
17 Sutherland B R, Sargent E H. Nature Photonics, 2016, 10(5), 295.
18 Noh J H, Im S H, Heo J H, et al. Nano Letters, 2013, 3, 211.
19 Zhao J, Deng Y, Wei H, et al. Science Advances, 2017, 3(11), 5616.
20 Zhu C, Niu X, Fu Y, et al. Nature Communications, 2019, 10, 815.
21 Kahwagi R F, Thornton S T, Smith B, et al. Frontiers of Optoelectronics, 2020, 13(3), 196.
22 Jie X, Hua D, Jun X, et al. Nano Energy, 2020, 75, 104940.
23 Jiang Q, Zhao Y, Zhang X, et al. Nature Photonics, 2019, 13(7), 1.
24 Lei M, Chen K, Rui W, et al. Journal of the American Chemical Society, 2018, 140(49), 17255.
25 Murali B, Yengel E, Peng W, et al. Journal of Physical Chemistry Letters, 2016, 8(1), 137.
26 Rolston N, Bush K A, Printz A D, et al. Advanced Energy Materials, 2018, 8(29), 1802139.
27 Rossini N S,Dassisti M, Benyounis K Y, et al. Materials & Design, 2012, 35(1), 572.
28 Jiang C H, Yang C Z. X-ray diffraction technology and its application, East China University of Science and Technology Press, China, 2010 (in Chinese).
姜传海, 杨传铮. X射线衍射技术及其应用, 华东理工大学出版社, 2010.
29 Stefenelli M, Todt J, Riedl A, et al. Journal of Applied Crystallography, 2013, 46(5), 1378.
30 Noyan I C, Huang T C, York B R. Critical Reviews in Solid State & Material Sciences, 1995, 20(2), 125.
31 Benediktovitch A, Ulyanenkova T, Keckes J, et al. Journal of Applied Crystallography, 2014, 47(6), 1931.
32 Chen Z, Prud"Homme N, Wang B, et al. Surface and Coatings Techno-logy, 2011, 206(2-3), 405.
33 Boyd C C, Cheacharoen R, Leijtens T, et al. Chemical Reviews, 2018, 119(5), 3418.
34 Xiao J Z, Li Z, Wu C C, et al. ACS Energy Letters, 2016, 1(5), 1014.
35 Christians J A, Schulz P, Tinkham J S, et al. Nature Energy, 2018, 3(1), 68.
36 Weller M T, Weber O J, Charles B. Journal of Materials Chemistry A, 2016, 4(40), 15375.
37 Wu C, Chen K, Guo D Y, et al. RSC Advances, 2018, 8(6), 2900.
38 Schwarz U, Wagner F, Syassen K, et al. Physical Review B, 1996, 53(19), 12545.
39 Liu G, Kong L, Gong J, et al. Advanced Functional Materials, 2017, 27(3), 1604208.
40 Kong L, Liu G, Gong J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32), 8910.
41 Lv X J, Wang Y, Stoumpos C C, et al. Advanced Materials, 2016, 28(39), 8663.
42 Baranov A N, Sokolov P S, Tafeenko V A, et al. Chemistry of Materials, 2013, 25(9), 1775.
43 Wang L, Wang K, Xiao G, et al. The Journal of Physical Chemistry Letters, 2016, 7(24), 5273.
44 Cao Y, Qi G, Liu C, et al. The Journal of Physical Chemistry C, 2018, 801, 673.
45 Tauc J,Grigorovici R, Vancu A, et al. Physica Status Solidi, 1966, 3(1), 37.
46 Prasanna R, Gold P A, Leijtens T C, et al. Journal of the American Chemical Society, 2017, 139(32), 11117.
47 Yin W J, Yang J H, Kang J, et al. Journal of Materials Chemistry A, 2015, 3, 8926.
48 Xia G, Cao Y, Qi G, et al. Journal of the American Chemical Society, 2017, 5, 206.
49 Zhu H, Fu Y, Meng F, et al. Nature Materials, 2015, 14, 634.
50 Wang T, Daiber B, Frost J M, et al. Energy & Environmental Science, 2017, 10(2), 509.
51 Huang Y, Sun Q D, Xu W, et al. Journal of Materials Chemistry A, 2015, 3(17), 8926.
52 Zhang L Z, Zeng Q X, Wang K. Journal of Physical Chemistry Letters, 2017, 8(16), 3752.
53 Cai W, Katrusiak A, Wu K, et al. Nature Communications, 2014, 5, 4337.
54 Cao Y, Qi G, Sui L, et al. Nanocrystals, 2020, 3(5), 18337.
55 Lee J, Park N, Xia G, et al. Advanced Energy Materials, 2020, 10, 1903249.
56 Lee J, Kim K, Kim H, et al. Advanced Energy Materials, 2015, 5, 1501310.
57 Binek A, Hanusch F C, Docampo P, et al. Journal of Physical Chemistry Letters, 2015, 6(7), 1249.
58 Deng Y H, Liu Y, Wu K, et al. Energy & Environmental Science: EES, 2017, 10(2), 516.
59 Chen Y, Li Y, Yu Y, et al. Nature, 2020, 577(7789), 209.
60 Li Z, Klein T R, Kim D H, et al. Nature Reviews Materials, 2018, 3(4), 18017.
61 Wang H, Zhu C, Chen Q, et al. Advanced Materials, 2019, 31, 1904408.
62 Xue D J, Hou Y, Liu S, et al. Nature Communications, 2020, 11, 1514.
63 Steele J A, Jin H, Dovgaliuk I, et al. Science, 2019, 365(6454), 3878.
64 Huang H M. Band gap regulation of ABX3 perovskite and the first principle study of its magnetic and optical properties. Ph.D. Thesis,Northwest University, China,2018(in Chinese).
黄海铭. ABX3型钙钛矿化合物的带隙调控及磁、光性质的第一性原理研究. 博士学位论文, 西北大学, 2018.
65 Chen D. Design of high efficiency photovoltaic materials based on strain and doping. Master's Thesis, Suzhou University of Science and Technology,China, 2017(in Chinese).
陈达. 基于应变与掺杂设计高效光伏材料. 硕士学位论文, 苏州科技大学, 2017.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[3] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[4] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[5] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[6] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[7] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[8] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[9] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[10] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[11] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[12] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[13] 杨潇, 曹成龙, 胡书, 葛嘉庆, 蒋青松, 盛传祥. 混合卤化物钙钛矿中的光致相分离效应[J]. 材料导报, 2022, 36(16): 20100115-15.
[14] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[15] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed