Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20110041-13    https://doi.org/10.11896/cldb.20110041
  无机非金属及其复合材料 |
GO/CS的结构、性能及其在水处理中的应用研究进展
姚庆达1,2, 梁永贤1,2, 王小卓1,2, 温会涛1,3, 周华龙1,3, 但卫华1,3,*
1 福建省皮革绿色设计与制造重点实验室,福建 晋江 362271
2 兴业皮革科技股份有限公司,福建 晋江 362261
3 四川大学制革清洁技术国家工程研究中心,成都 610065
Structure and Performance of Graphene Oxide/Chitosan Composite and Its Application in Water Treatment: a Review
YAO Qingda1,2, LIANG Yongxian1,2, WANG Xiaozhuo1,2, WEN Huitao1,3, ZHOU Hualong1,3, DAN Weihua1,3,*
1 Fujian Key Laboratory of Green Design and Manufacture of Leather, Jinjiang 362271, Fujian, China
2 Xingye Leather Technology Co., Ltd., Jinjiang 362261, Fujian, China
3 National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University ,Chengdu 610065,China
下载:  全 文 ( PDF ) ( 10565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代工业的快速发展,因危险化学品泄漏和溢出造成的水污染已引起全球关注。含重金属、合成染料、芳香族有机物的废水将造成严重的环境、健康和安全问题。吸附法是最经济、快速、有效的水处理方法之一。传统吸附材料(如活性炭、高岭土、聚吡咯等)对某种类型的污染物表现出高去除能力,但对其他类型污染物的去除效率较低,且存在吸附量小、物理力学性能差、可回收性差等缺点,使吸附技术面临巨大的难题和挑战。
近年来,石墨烯的研究热潮推动了吸附材料的高速发展,石墨烯优越的性能使氧化石墨烯/壳聚糖(GO/CS)成为备受关注的研究热点之一。比表面积大、活性位点多的GO/CS在吸附性能方面展现出了巨大的潜力。与传统吸附材料不同的是,GO/CS物理力学性能和化学稳定性更高,并可通过结构设计(如石墨烯氧化程度的调整、氧化石墨烯和壳聚糖的改性、交联等)来改善其吸附效果。
石墨烯氧化程度的增加有助于提升氧化石墨烯与壳聚糖的相容性和其与被吸附物的静电作用、氢键作用,还原程度的增加则有利于提升π-π相互作用;氧化石墨烯、壳聚糖的改性可改变复合材料表面的电荷性质,有利于吸附性能的提升;交联则有利于提升氧化石墨烯与壳聚糖的相容性,并在一定程度上增强与目标分子或离子的相互作用。GO/CS的结构决定其稳定性,还原程度的增加和交联有助于降低GO/CS的溶胀性并提升其物理力学性能。
本文简要介绍了GO/CS的制备方法,探讨了结构控制与GO/CS吸附性能的关系,详细介绍了氧化石墨烯氧化程度的调整、氧化石墨烯和壳聚糖的改性、交联对吸附性能的影响,并对GO/CS的溶胀性和物理力学性能进行了分析,展望了其在水处理领域面临的机遇与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚庆达
梁永贤
王小卓
温会涛
周华龙
但卫华
关键词:  氧化石墨烯/壳聚糖  吸附  水处理  性能控制  稳定性    
Abstract: With the rapid development of modern industry, water pollution caused by leaks and spills of hazardous chemicals has aroused global environmental concern. Wastewater containing heavy metals, synthetic dyes, and aromatic organics will cause serious environment, health and safety problems. The adsorption method is one of the most economical, fast and effective water treatment methods. Traditional adsorbent materials such as activated carbon, kaolin, polypyrrole, etc., show high removal capacity for certain types of pollutant. However, there are some disadvantages such as low adsorption capacities, poor physical mechanical properties and less recoverability, which make adsorption technology facing enormous difficulties and challenges in the future.
In recent years, the research boom of graphene has promoted the rapid development of adsorption materials. The superior performance of graphene has made graphene oxide/chitosan composite (GO/CS) one of the research hotspots, and GO/CS with large specific surface area and many active sites has shown great potential in terms of adsorption performance. Compared with traditional adsorption materials, GO/CS has better physical mechanical properties and chemical stability, and the adsorption effect can be improved by structural design like controlling the degree of oxidation of graphene, and modification and cross-linking of graphene oxide and chitosan.
The increase in the degree of oxidation of graphene helps to improve the compatibility of graphene oxide with chitosan, as well as the electrostatic interaction and hydrogen bonding of it with the adsorbate. The increase in the degree of reduction is beneficial to enhance the π-π interaction; the modification of graphene oxide and chitosan can change the charge properties of the composite material surface, which is beneficial to the improvement of adsorption performance; cross-linking has a huge effect on improving the compatibility of graphene oxide and chitosan, to a certain extent, and enhances the interaction with target molecules or ions. Besides, the structure of GO/CS determines its stability, and the increase in the degree of reduction and cross-linking can help to reduce the swelling of GO/CS and improve the physical mechanical properties.
This article briefly introduces the preparation method of GO/CS, and discusses the relationship between structure control and GO/CS adsorption performance. The influence of adsorption performance was discussed in detail in the aspect of controlling the oxidation degree of graphene, and modification and cross-linking of graphene oxide and chitosan. Furthermore, the swelling and physical mechanical properties of GO/CS were analyzed, and the opportunities and challenges faced in the field of water treatment were prospected.
Key words:  graphene oxide/chitosan    adsorption    water treatment    performance control    stability
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TQ424  
基金资助: 泉州市科技计划项目(2020C038R)
通讯作者:  dwh5607@263.net   
作者简介:  姚庆达,兴业皮革科技股份有限公司福建省皮革绿色设计与制造重点实验室,副主任。2015年毕业于东北大学,材料科学与工程专业。主要从事功能皮革、石墨烯基复合材料等方向的研究。
但卫华,四川大学制革清洁技术国家工程实验室研究员,兴业皮革科技股份有限公司福建省皮革绿色设计与制造重点实验室主任。主要从事制革清洁化生产、高性能皮革绿色设计与制造、胶原基生物材料等方向的研究。
引用本文:    
姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
YAO Qingda, LIANG Yongxian, WANG Xiaozhuo, WEN Huitao, ZHOU Hualong, DAN Weihua. Structure and Performance of Graphene Oxide/Chitosan Composite and Its Application in Water Treatment: a Review. Materials Reports, 2022, 36(4): 20110041-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110041  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20110041
1 Shi Q, Li Y, Wang L, et al. International Journal of Biological Macromolecules, 2020, 152, 449.
2 Mei J, Zhang H, Li Z, et al. Carbohydrate Polymers, 2019, 224, 115154.
3 Qu J, Tian X, Jiang Z, et al. Journal of Hazardous Materials, 2020, 387, 121718.
4 Gonçalves J O, Silva K A, Rios E C, et al. Chemical Engineering & Technology, 2019, 42, 45.
5 Sara D, Kanti S T, Chi P. Environmental Technology, 2019, 40, 3762.
6 Meng Y, Wu X, Yan Y, et al. Materials Science Forum,2020,6005,93.
7 Liu Z, Gao Z, Xu L, et al. RSC Advances, 2020,10, 17524.
8 Dai H, Huang Y, Huang H. Carbohydrate Polymers, 2018, 185, 1.
9 Jiang X, Pan W, Chen M, et al. Dalton Transactions, 2020, 49, 6097.
10 Wittmar A S, Klug J, Ulbricht M, et al. Carbohydrate Polymers, 2020, 237, 116135.
11 Yan M, Huang W, Li Z, et al. International Journal of Biological Macromolecules, 2019, 136, 927.
12 Wang R, Zhang X, Zhu J, et al. Colloids and Surfaces A, 2020, 598, 124860.
13 Li Y, Sun J, Du Q, et al. Carbohydrate Polymers, 2014, 102, 755.
14 Huang Y, Zeng M, Chen J, et al. Materials & Design, 2018, 148, 104.
15 Li X, Zhou H, Wu W, et al. Journal of Colloid Interface, 2015, 448, 389.
16 Qi T, Huang C, Yan S, et al. Talanta, 2015, 144, 1116.
17 Zhang M, Ma G, Zhang L, et al. Analyst, 2019, 144, 5164.
18 Zhang C, Zhang Y, Hao X, et al. Advanced Composites and Hybrid Materials, 2018, DOI: 10.1007/s42114-018-0029-2.
19 Bai B, Mi X, Xiang X, et al. Carbohydrate Research, 2013, 380, 137.
20 Du C, Zhang X, Wu C. Polymers for Advanced Technologies, 2020, 31, 807.
21 Qian X, Li N, Wang Q. et al. Desalination, 2018, 438, 83.
22 Zhang D, Yang S, Chen Y, et al. Polymers, 2018, 10, 294.
23 Croitoru A M, Ficai A, Ficai D, et al. Materials, 2020, 13, 1687.
24 Ulutürk C, Alemdar N. Journal of Applied Polymer Science, 2019, 136, 48008.
25 Dai Z, Lu Q, Quan Q, et al. New Journal of Chemistry, 2017, 41, 671.
26 Qin H, Wang J, Wang T, et al. Frontiers in Chemistry, 2018, 6, DOI: 10.3389/fchem.2018.00565.
27 Lai K C, Hiew B Y, Lee L Y, et al. Bioresource Technology, 2019, 274, 134.
28 Wang Y, Xia G, Wu C, et al. Carbohydrate Poymers, 2015, 115, 686.
29 Hsan N, Dutta P K, Kumar S, et al. International Journal of Biological Macromolecules, 2019, 125, 300.
30 Jorgensen S E, Fath B D. Encyclopedia of Ecology, Academic Press, USA, 2008.
31 Yu R, Shi Y, Yang D, et al. ACS Applied Materials & Interfaces, 2017, 9, 21809.
32 Samuel M S, Bhattacharya J, Raj S, et al. International Journal of Biological Macromolecules, 2019, 121, 285.
33 Khorramdel H, Dabiri E, Tabrizi F F, et al. Separation and Purification Technology, 2019, 212, 497.
34 Zhang H, Luo X, Lin X, et al. Applied Surface Science,2016,360,715.
35 Tang C, Yu P, Tang L, et al. Ecotoxicology and Environmental Satety, 2018, 165, 299.
36 Majidi R, Karami A R. Diamond & Related Materials, 2016, 66, 47.
37 Guo X, Qu L, Tian M, et al. Water Enviroment Research, 2016, 88, 579.
38 Liu Y, Liu R, Li M, et al. Carbohydrate Polymers, 2019, 220, 141.
39 Liao Y, Wang M, Chen D. Industrial & Engineering Chemistry Research, 2018, 57, 8472.
40 Gao H, Sun Y, Zhou J, et al. ACS Applied Materials & Interfaces, 2013, 5, 425.
41 Sharma P, Singh A K, Shahi V K. ACS Sustainable Chemistry & Enginnering, 2019, 7, 1427.
42 He S, Zhang F, Cheng S, et al. ACS Sustainable Chemistry & Enginne-ring, 2016, 4, 3948.
43 Marnani N N, Shahbazi A. Chemosphere, 2019, 218, 715.
44 Zhang C, Zhu L, Li W, et al. Journal of Applied Polymer Science, 2016, 133, 43348.
45 Sowmya A, Das D, Prabhakar S, et al. Enviromental Progress & Sustai-nable Energy, 2020, 39, 13325.
46 Sessarego S, Rodrigues S G, Xiao Y, et al. Carbohydrate Polymers, 2019, 211, 249.
47 Song Y, Sun Y, Chen M, et al. Journal of Water Process Engineering, 2020, 34, 101086.
48 Subedi N, Lähde A, Danso E A, et al. International Journal of Biological Macromolecules, 2019, 137, 948.
49 Le T T, Le V T, Dao M U, et al. Chemical Engineering Communications, 2019, 206, 1337.
50 Liu S, Ge H, Cheng S, et al. Journal of Nanoscience and Nanotechnology, 2019, 19, 7993.
51 Liu S, Yao F, Oderinde O, et al. Chemical Engineering Journal, 2017, 321, 502.
52 Lee I, Kang M, Jang S, et al. Journal of Materials Chemistry: A, 2019, 7, 1737.
53 Wu P, Wang Y, Li Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 553.
54 Nath J, Chowdhury A, Dolui S K. Advances in Polymer Technology, 2018, 37, 3665.
55 Mei J, Zhang H, Li Z, et al. Carbohydrate Polymers, 2020, 247, 116733.
56 Yan N, Capezzuto F, Lavorgna M, et al. Nanoscale, 2016, 8, 10783.
57 Perumal S, Atchudan R, Yoon D H, et al. Journal of Materials Science, 2020, 55, 9354.
58 Fan L, Yi J, Tong J, et al. International Journal of Biological Macromo-lecules, 2016, 91, 358.
59 Kyzas G Z, Kostoglou M. Separation and Purification Technology, 2015, 149, 92.
60 Sutirman Z A, Sanagi M M, Karim K J, et al. International Journal of Biological Macromolecules, 2018, 116, 255.
61 Kim S, Zhou S, Hu Y, et al. Nature Materials, 2012, 11, 544.
62 Wu M, Chen W, Mao Q, et al. Chemical Engineering Research and Design, 2019, 144, 35.
63 Tasselli F, Mirmohseni A, Dorraji M S, et al. Reactive & Functional Polymers, 2013, 73, 218.
64 Luna M S, Ascione C, Santillo C, et al. Carbohydrate Polymers, 2019, 211, 195.
65 Singh N, Riyajuddin S, Ghosh K, et al. ACS Applied Nano Materials, 2019, 2, 7379.
66 Sayyar S, Murray E, Gambhir S, et al. Journal of Metals, 2016, 68, 384.
67 Xi Y, Hu J, Zhuang L, et al. ACS Applied Materials & Interfaces, 2016, 8, 15557.
68 He Y, Zhang N, Wang W, et al. Advanced Materials Research, 2012, 430, 247.
69 Wei Y, Wang J, Li H, et al. RSC Advances, 2018, 8, 13656.
70 Chee W K, Lim H N, Huang N M, et al. RSC Advances, 2015, 83, 68014.
71 Zhou T, Qi X, Bai H, et al. RSC Advances, 2016, 6, 34153.
72 Chen C, Zhang Y, Zeng J, et al. Applied Surface Science, 2017, 424, 170.
73 Kosowska K, Pyzik P D, Nocuń M, et al. Materials Chemistry and Phy-sics, 2018, 216, 28.
74 Liu T, Yang B, Graham N, et al. Journal of Membrane Science, 2017, 542, 31.
75 Luo J, Fan C, Xiao Z, et al. Colloids and Surfaces A, 2019, 578, 123584.
76 Kumar S K, Jiang S J. Journal of Environment Chemical Engineering, 2016, 4, 1698.
77 Sherlala A I, Raman A A, Bello M M, et al. Journal of Environmental Management, 2019, 246, 547.
78 Zhao C R, Shan H M, Zeng C Y, et al. Enviromental Science, 2020, 41(8), 3665(in Chinese).
赵超然, 单慧媚, 曾春芽, 等. 环境科学, 2020, 41(8), 3665.
79 Li L, Ding C K, Zhang Y X, et al. Modern Chemical Industry, 2020, 40(8), 167(in Chinese).
李璐, 丁长坤, 张宇鑫, 等.现代化工, 2020, 40(8), 167.
80 Li L B, Ma J. New Chemical Materials, 2019(8),261(in Chinese).
李林波, 马键. 化工新型材料, 2019(8), 261.
81 Zhang Y, Chen S, Feng X, et al. Environmental Science and Pollution Research, 2019, 26, 28898.
82 Li T, Liu X, Li L, et al. Journal of Polymer Research, 2019, 26, 281.
83 Vo T S, Vo T T, Suk J W, et al. Nano Convergence, 2020, 7, 4.
84 Yao Q D, Liang Y X, Wen H T, et al. Leather and Chemicals, 2019, 36(6), 16(in Chinese).
姚庆达, 梁永贤, 温会涛, 等. 皮革与化工, 2019, 36(6), 16.
85 Jiang K, You F, Yao C, et al. Chinese Journal of Colloid & Polymer, 2020, 38(1), 25(in Chinese).
江坤, 游峰, 姚楚, 等. 胶体与聚合物, 2020, 38(1), 25.
86 Neves T F, Dalarme N B, Silva P M, et al. Journal of Environmental Chemical Engineering, 2020, 8, 103820.
87 Shao M, Wang A W, Han H, et al. Industrial Water Treatment, 2019, 39(11), 17(in Chinese).
邵敏, 王安慰, 韩惠, 等. 工业水处理, 2019, 39(11), 17.
88 Huang W T, Deng C X, Ji Y C, et al. Acta Materiae Compositae Sinica, 2021, 38, 1(in Chinese).
黄文涛, 邓呈逊, 吉宇尘, 等. 复合材料学报, 2021, 38, 1.
89 Sheshmani S, Kazemi A. International Journal of Environmental Analytical Chemistry, 2020, 100, 1362.
90 Samuel M S, Suman S, Selvarajan E, et al. Journal of Photochemistry & Photobiology, B: Biology, 2020, 204, 111809.
91 Zhang J L, Yan Y K, Zhang N. New Chemical Maerials, 2019, 47(5), 249(in Chinese).
张军丽, 闫永康, 张宁. 化工新型材料, 2019, 47(5), 249.
92 Kamal S, Khan F, Kausar H, et al. Polymer Composites, 2020, 41, 3758.
93 Xu X, Tian M, Qu L, et al. Water Environment Research, 2017, 89, 555.
94 Nolasco J E, Cañeba E N, Edquila K M, et al. Key Engineering Mate-rials, 2019, 801, 304.
95 Zhang Y, Li H, Li M, et al. Journal of Molecular Structure, 2020, 1209, 127973.
96 Shah J, Jan M R. Carbohydrate Polymers, 2018, 199, 461.
97 Mohseni M, Tahermansouri H. Colloids and Surfaces B, 2017, 160, 671.
98 Femg Z, Odelius K, Hakkarainen M. Carbohydrate Polymers, 2018, 196, 135.
[1] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[2] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[3] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[4] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[5] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[6] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[7] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[8] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[9] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[10] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[11] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[12] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[13] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[14] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[15] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed