Structure and Performance of Graphene Oxide/Chitosan Composite and Its Application in Water Treatment: a Review
YAO Qingda1,2, LIANG Yongxian1,2, WANG Xiaozhuo1,2, WEN Huitao1,3, ZHOU Hualong1,3, DAN Weihua1,3,*
1 Fujian Key Laboratory of Green Design and Manufacture of Leather, Jinjiang 362271, Fujian, China 2 Xingye Leather Technology Co., Ltd., Jinjiang 362261, Fujian, China 3 National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University ,Chengdu 610065,China
Abstract: With the rapid development of modern industry, water pollution caused by leaks and spills of hazardous chemicals has aroused global environmental concern. Wastewater containing heavy metals, synthetic dyes, and aromatic organics will cause serious environment, health and safety problems. The adsorption method is one of the most economical, fast and effective water treatment methods. Traditional adsorbent materials such as activated carbon, kaolin, polypyrrole, etc., show high removal capacity for certain types of pollutant. However, there are some disadvantages such as low adsorption capacities, poor physical mechanical properties and less recoverability, which make adsorption technology facing enormous difficulties and challenges in the future. In recent years, the research boom of graphene has promoted the rapid development of adsorption materials. The superior performance of graphene has made graphene oxide/chitosan composite (GO/CS) one of the research hotspots, and GO/CS with large specific surface area and many active sites has shown great potential in terms of adsorption performance. Compared with traditional adsorption materials, GO/CS has better physical mechanical properties and chemical stability, and the adsorption effect can be improved by structural design like controlling the degree of oxidation of graphene, and modification and cross-linking of graphene oxide and chitosan. The increase in the degree of oxidation of graphene helps to improve the compatibility of graphene oxide with chitosan, as well as the electrostatic interaction and hydrogen bonding of it with the adsorbate. The increase in the degree of reduction is beneficial to enhance the π-π interaction; the modification of graphene oxide and chitosan can change the charge properties of the composite material surface, which is beneficial to the improvement of adsorption performance; cross-linking has a huge effect on improving the compatibility of graphene oxide and chitosan, to a certain extent, and enhances the interaction with target molecules or ions. Besides, the structure of GO/CS determines its stability, and the increase in the degree of reduction and cross-linking can help to reduce the swelling of GO/CS and improve the physical mechanical properties. This article briefly introduces the preparation method of GO/CS, and discusses the relationship between structure control and GO/CS adsorption performance. The influence of adsorption performance was discussed in detail in the aspect of controlling the oxidation degree of graphene, and modification and cross-linking of graphene oxide and chitosan. Furthermore, the swelling and physical mechanical properties of GO/CS were analyzed, and the opportunities and challenges faced in the field of water treatment were prospected.
姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
YAO Qingda, LIANG Yongxian, WANG Xiaozhuo, WEN Huitao, ZHOU Hualong, DAN Weihua. Structure and Performance of Graphene Oxide/Chitosan Composite and Its Application in Water Treatment: a Review. Materials Reports, 2022, 36(4): 20110041-13.
1 Shi Q, Li Y, Wang L, et al. International Journal of Biological Macromolecules, 2020, 152, 449. 2 Mei J, Zhang H, Li Z, et al. Carbohydrate Polymers, 2019, 224, 115154. 3 Qu J, Tian X, Jiang Z, et al. Journal of Hazardous Materials, 2020, 387, 121718. 4 Gonçalves J O, Silva K A, Rios E C, et al. Chemical Engineering & Technology, 2019, 42, 45. 5 Sara D, Kanti S T, Chi P. Environmental Technology, 2019, 40, 3762. 6 Meng Y, Wu X, Yan Y, et al. Materials Science Forum,2020,6005,93. 7 Liu Z, Gao Z, Xu L, et al. RSC Advances, 2020,10, 17524. 8 Dai H, Huang Y, Huang H. Carbohydrate Polymers, 2018, 185, 1. 9 Jiang X, Pan W, Chen M, et al. Dalton Transactions, 2020, 49, 6097. 10 Wittmar A S, Klug J, Ulbricht M, et al. Carbohydrate Polymers, 2020, 237, 116135. 11 Yan M, Huang W, Li Z, et al. International Journal of Biological Macromolecules, 2019, 136, 927. 12 Wang R, Zhang X, Zhu J, et al. Colloids and Surfaces A, 2020, 598, 124860. 13 Li Y, Sun J, Du Q, et al. Carbohydrate Polymers, 2014, 102, 755. 14 Huang Y, Zeng M, Chen J, et al. Materials & Design, 2018, 148, 104. 15 Li X, Zhou H, Wu W, et al. Journal of Colloid Interface, 2015, 448, 389. 16 Qi T, Huang C, Yan S, et al. Talanta, 2015, 144, 1116. 17 Zhang M, Ma G, Zhang L, et al. Analyst, 2019, 144, 5164. 18 Zhang C, Zhang Y, Hao X, et al. Advanced Composites and Hybrid Materials, 2018, DOI: 10.1007/s42114-018-0029-2. 19 Bai B, Mi X, Xiang X, et al. Carbohydrate Research, 2013, 380, 137. 20 Du C, Zhang X, Wu C. Polymers for Advanced Technologies, 2020, 31, 807. 21 Qian X, Li N, Wang Q. et al. Desalination, 2018, 438, 83. 22 Zhang D, Yang S, Chen Y, et al. Polymers, 2018, 10, 294. 23 Croitoru A M, Ficai A, Ficai D, et al. Materials, 2020, 13, 1687. 24 Ulutürk C, Alemdar N. Journal of Applied Polymer Science, 2019, 136, 48008. 25 Dai Z, Lu Q, Quan Q, et al. New Journal of Chemistry, 2017, 41, 671. 26 Qin H, Wang J, Wang T, et al. Frontiers in Chemistry, 2018, 6, DOI: 10.3389/fchem.2018.00565. 27 Lai K C, Hiew B Y, Lee L Y, et al. Bioresource Technology, 2019, 274, 134. 28 Wang Y, Xia G, Wu C, et al. Carbohydrate Poymers, 2015, 115, 686. 29 Hsan N, Dutta P K, Kumar S, et al. International Journal of Biological Macromolecules, 2019, 125, 300. 30 Jorgensen S E, Fath B D. Encyclopedia of Ecology, Academic Press, USA, 2008. 31 Yu R, Shi Y, Yang D, et al. ACS Applied Materials & Interfaces, 2017, 9, 21809. 32 Samuel M S, Bhattacharya J, Raj S, et al. International Journal of Biological Macromolecules, 2019, 121, 285. 33 Khorramdel H, Dabiri E, Tabrizi F F, et al. Separation and Purification Technology, 2019, 212, 497. 34 Zhang H, Luo X, Lin X, et al. Applied Surface Science,2016,360,715. 35 Tang C, Yu P, Tang L, et al. Ecotoxicology and Environmental Satety, 2018, 165, 299. 36 Majidi R, Karami A R. Diamond & Related Materials, 2016, 66, 47. 37 Guo X, Qu L, Tian M, et al. Water Enviroment Research, 2016, 88, 579. 38 Liu Y, Liu R, Li M, et al. Carbohydrate Polymers, 2019, 220, 141. 39 Liao Y, Wang M, Chen D. Industrial & Engineering Chemistry Research, 2018, 57, 8472. 40 Gao H, Sun Y, Zhou J, et al. ACS Applied Materials & Interfaces, 2013, 5, 425. 41 Sharma P, Singh A K, Shahi V K. ACS Sustainable Chemistry & Enginnering, 2019, 7, 1427. 42 He S, Zhang F, Cheng S, et al. ACS Sustainable Chemistry & Enginne-ring, 2016, 4, 3948. 43 Marnani N N, Shahbazi A. Chemosphere, 2019, 218, 715. 44 Zhang C, Zhu L, Li W, et al. Journal of Applied Polymer Science, 2016, 133, 43348. 45 Sowmya A, Das D, Prabhakar S, et al. Enviromental Progress & Sustai-nable Energy, 2020, 39, 13325. 46 Sessarego S, Rodrigues S G, Xiao Y, et al. Carbohydrate Polymers, 2019, 211, 249. 47 Song Y, Sun Y, Chen M, et al. Journal of Water Process Engineering, 2020, 34, 101086. 48 Subedi N, Lähde A, Danso E A, et al. International Journal of Biological Macromolecules, 2019, 137, 948. 49 Le T T, Le V T, Dao M U, et al. Chemical Engineering Communications, 2019, 206, 1337. 50 Liu S, Ge H, Cheng S, et al. Journal of Nanoscience and Nanotechnology, 2019, 19, 7993. 51 Liu S, Yao F, Oderinde O, et al. Chemical Engineering Journal, 2017, 321, 502. 52 Lee I, Kang M, Jang S, et al. Journal of Materials Chemistry: A, 2019, 7, 1737. 53 Wu P, Wang Y, Li Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 553. 54 Nath J, Chowdhury A, Dolui S K. Advances in Polymer Technology, 2018, 37, 3665. 55 Mei J, Zhang H, Li Z, et al. Carbohydrate Polymers, 2020, 247, 116733. 56 Yan N, Capezzuto F, Lavorgna M, et al. Nanoscale, 2016, 8, 10783. 57 Perumal S, Atchudan R, Yoon D H, et al. Journal of Materials Science, 2020, 55, 9354. 58 Fan L, Yi J, Tong J, et al. International Journal of Biological Macromo-lecules, 2016, 91, 358. 59 Kyzas G Z, Kostoglou M. Separation and Purification Technology, 2015, 149, 92. 60 Sutirman Z A, Sanagi M M, Karim K J, et al. International Journal of Biological Macromolecules, 2018, 116, 255. 61 Kim S, Zhou S, Hu Y, et al. Nature Materials, 2012, 11, 544. 62 Wu M, Chen W, Mao Q, et al. Chemical Engineering Research and Design, 2019, 144, 35. 63 Tasselli F, Mirmohseni A, Dorraji M S, et al. Reactive & Functional Polymers, 2013, 73, 218. 64 Luna M S, Ascione C, Santillo C, et al. Carbohydrate Polymers, 2019, 211, 195. 65 Singh N, Riyajuddin S, Ghosh K, et al. ACS Applied Nano Materials, 2019, 2, 7379. 66 Sayyar S, Murray E, Gambhir S, et al. Journal of Metals, 2016, 68, 384. 67 Xi Y, Hu J, Zhuang L, et al. ACS Applied Materials & Interfaces, 2016, 8, 15557. 68 He Y, Zhang N, Wang W, et al. Advanced Materials Research, 2012, 430, 247. 69 Wei Y, Wang J, Li H, et al. RSC Advances, 2018, 8, 13656. 70 Chee W K, Lim H N, Huang N M, et al. RSC Advances, 2015, 83, 68014. 71 Zhou T, Qi X, Bai H, et al. RSC Advances, 2016, 6, 34153. 72 Chen C, Zhang Y, Zeng J, et al. Applied Surface Science, 2017, 424, 170. 73 Kosowska K, Pyzik P D, Nocuń M, et al. Materials Chemistry and Phy-sics, 2018, 216, 28. 74 Liu T, Yang B, Graham N, et al. Journal of Membrane Science, 2017, 542, 31. 75 Luo J, Fan C, Xiao Z, et al. Colloids and Surfaces A, 2019, 578, 123584. 76 Kumar S K, Jiang S J. Journal of Environment Chemical Engineering, 2016, 4, 1698. 77 Sherlala A I, Raman A A, Bello M M, et al. Journal of Environmental Management, 2019, 246, 547. 78 Zhao C R, Shan H M, Zeng C Y, et al. Enviromental Science, 2020, 41(8), 3665(in Chinese). 赵超然, 单慧媚, 曾春芽, 等. 环境科学, 2020, 41(8), 3665. 79 Li L, Ding C K, Zhang Y X, et al. Modern Chemical Industry, 2020, 40(8), 167(in Chinese). 李璐, 丁长坤, 张宇鑫, 等.现代化工, 2020, 40(8), 167. 80 Li L B, Ma J. New Chemical Materials, 2019(8),261(in Chinese). 李林波, 马键. 化工新型材料, 2019(8), 261. 81 Zhang Y, Chen S, Feng X, et al. Environmental Science and Pollution Research, 2019, 26, 28898. 82 Li T, Liu X, Li L, et al. Journal of Polymer Research, 2019, 26, 281. 83 Vo T S, Vo T T, Suk J W, et al. Nano Convergence, 2020, 7, 4. 84 Yao Q D, Liang Y X, Wen H T, et al. Leather and Chemicals, 2019, 36(6), 16(in Chinese). 姚庆达, 梁永贤, 温会涛, 等. 皮革与化工, 2019, 36(6), 16. 85 Jiang K, You F, Yao C, et al. Chinese Journal of Colloid & Polymer, 2020, 38(1), 25(in Chinese). 江坤, 游峰, 姚楚, 等. 胶体与聚合物, 2020, 38(1), 25. 86 Neves T F, Dalarme N B, Silva P M, et al. Journal of Environmental Chemical Engineering, 2020, 8, 103820. 87 Shao M, Wang A W, Han H, et al. Industrial Water Treatment, 2019, 39(11), 17(in Chinese). 邵敏, 王安慰, 韩惠, 等. 工业水处理, 2019, 39(11), 17. 88 Huang W T, Deng C X, Ji Y C, et al. Acta Materiae Compositae Sinica, 2021, 38, 1(in Chinese). 黄文涛, 邓呈逊, 吉宇尘, 等. 复合材料学报, 2021, 38, 1. 89 Sheshmani S, Kazemi A. International Journal of Environmental Analytical Chemistry, 2020, 100, 1362. 90 Samuel M S, Suman S, Selvarajan E, et al. Journal of Photochemistry & Photobiology, B: Biology, 2020, 204, 111809. 91 Zhang J L, Yan Y K, Zhang N. New Chemical Maerials, 2019, 47(5), 249(in Chinese). 张军丽, 闫永康, 张宁. 化工新型材料, 2019, 47(5), 249. 92 Kamal S, Khan F, Kausar H, et al. Polymer Composites, 2020, 41, 3758. 93 Xu X, Tian M, Qu L, et al. Water Environment Research, 2017, 89, 555. 94 Nolasco J E, Cañeba E N, Edquila K M, et al. Key Engineering Mate-rials, 2019, 801, 304. 95 Zhang Y, Li H, Li M, et al. Journal of Molecular Structure, 2020, 1209, 127973. 96 Shah J, Jan M R. Carbohydrate Polymers, 2018, 199, 461. 97 Mohseni M, Tahermansouri H. Colloids and Surfaces B, 2017, 160, 671. 98 Femg Z, Odelius K, Hakkarainen M. Carbohydrate Polymers, 2018, 196, 135.