Research Progress on Acoustic Model of Porous Sound Absorbing Materials and Measurement Method of Its Characteristic Parameters
YU Changshuai1,2,3, LUO Zhong1,*, LUO Haitao2,3, HE Fengxia1
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China 2 Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
Abstract: Noise is an important environmental factor of manned spacecraft. The increase of spacecraft environmental noise can directly affect astronauts' work and rest, and then affect space science missions. However, there were many problems of excessive noise in the past manned spacecraft. Porous sound-absorbing materials have been applied in the international space station and achieved good noise reduction effect. The Chinese space station is expected to be built in 2022. Understanding the acoustic model and absorption mechanism of acoustic porous materials is of great significance to the application of noise reduction methods in the operation stage of our space station. The acoustic equivalent model of porous sound-absorbing materials can be divided into empirical models and phenomenological models. The Delany-Bazley model is a commonly used empirical model, which can not provide accurate prediction. The phenomenological model considers the propagation of sound waves in the pores and cavities of materials. The Johnson-Champoux-Allard phenomenological model has been applied by many scholars. Acoustic characteristic parameters including airflow resistivity, porosity, tortuosity, viscous characteristic length and thermal characteristic length of a porous material are the key to establishing JCA model accurately. Airflow resistivity test methods include direct flow me-thod, acoustic impedance tube method, alternating current (AC) method and comparison methods. Porosity test methods are divided into direct test method and acoustic impedance tube test methods. Tortuosity, viscous characteristic length and thermal characteristic length can be directly measured by ultrasonic, and direct measurement is usually more complex, less reliable and destructive. The inversion optimization method is a common method to obtain tortuosity, viscous characteristic length and thermal characteristic length of a porous material. This paper summarizes the application of porous materials in the international space station and the research progress of the acoustic equivalent model of porous materials, and introduces the sound absorption principle of porous materials, the basic equation of acoustic disturbance and the test methods of acoustic attribute parameters. It focuses on the empirical model and phenomenological model in the acoustic equivalent model of porous materials, and then analyzes the acoustic properties of porous materials in the acoustic equivalent model. The test methods of characteristic parameters are discussed in detail.
于长帅, 罗忠, 骆海涛, 何凤霞. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 20110035-11.
YU Changshuai, LUO Zhong, LUO Haitao, HE Fengxia. Research Progress on Acoustic Model of Porous Sound Absorbing Materials and Measurement Method of Its Characteristic Parameters. Materials Reports, 2022, 36(4): 20110035-11.
1 Thirsk R, Kuipers A, Mukai C, et al. Canadian Medical Association Journal, 2009, 180(12),1216. 2 Grosveld F W, Goodman J R, Pilkinton G D.In: Noise-Con 2003, the 2003 National Conference on Noise Control Engineering. Washington DC, 2003, pp.23. 3 O'keefe E, Counter D.In:Space Programs and Technologies Conference and Exhibit. Huntsville AL, 1993, pp.4080. 4 Sellen N, Galland M A, Hilbrunner O.In:8th AIAA/CEAS Aeroacoustics Conference. Colorado, 2002,pp.2504. 5 Delany M E, Bazley E N.Applied Acoustics, 1970, 3(2), 105. 6 Miki Y.Journal of the Acoustical Society of Japan.1990,11(1),19. 7 Champoux Y, Allard J F.Journal of Applied Physics,1991,70(4),1975. 8 Johnson D L, Koplik J, Dashen R, et al. Journal of Fluid Mechanics, 1987, 176(1), 379. 9 Kino N, Ueno T.Applied Acoustics, 2007, 68(11), 1468. 10 Kino N.Applied Acoustics, 2015,96, 153. 11 Kino N, Ueno T.Applied Acoustics, 2008, 69(4), 325. 12 Lafarge D, Lemarinier P, Allard J F, et al. Journal of the Acoustical Society of America, 1997, 102(4), 1995. 13 Biot M A.Journal of the Acoustical Society of America, 1956, 28(2), 168. 14 Biot M A.Journal of the Acoustical Society of America, 1956, 28(2), 179. 15 Ma D Y. Noise and vibration control engineering manual, China Machine Press, China, 2002,pp.1032(in Chinese). 马大猷. 噪声与振动控制工程手册, 机械工业出版社, 2002,pp.1032. 16 Abbad A, Atalla N, Ouisse M, et al. Journal of Sound and Vibration, https://doi.org/10. 1016j.jsv.2019.114873. 17 Wang Y H. Research on sound absorption properties and mechanisms of multi-level bionic coupling materials. Ph.D. Thesis, Jilin University, China, 2014(in Chinese). 王永华. 多级仿生耦合材料吸声性能及机理研究.博士学位论文, 吉林大学, 2014. 18 Goodman J R, Grosveld F W. NASA/SP-2015-624 National Aeronautics and SpaceAdministration, Houston, 2015. 19 Peng M,Zhao X M. Materials Reports A:Research Papers. 2019, 33(11),3669(in Chinese). 彭敏, 赵晓明.材料导报:研究篇, 2019, 33(11),3669. 20 Allard J F. In: Propagation of sound in porous media: modeling sound absorbing materials, Elsevier Applied Science, New York,1993,pp.45. 21 Kim B, Cho S, Min D, et al. Composite Structures, 2016,145(2016) 242. 22 Kidner M R F, Hansen C H. International Journal of Acoustics & Vibrations, 2008, 13(3),112. 23 Utsuno H, Tanaka T, Fujikawa T, et al. Journal of the Acoustical Society of America, 1989, 86(2), 637. 24 Olny X, Panneton R. Journal of the Acoustical Society of America, 2008, 123(2),814. 25 Taban E, Khavanin A, Faridan M, et al. International Journal of Environmental Science and Technology, 2020, 17(1), 39. 26 Atalla Y, Panneton R. Canadian Acoustics, 2005, 33(1), 11. 27 Kino N, Ueno T.Applied Acoustics, 2008, 69(4), 325. 28 Wilson D K.Journal of the Acoustical Society of America, 1993, 94(2), 1136. 29 Panneton R, Olny X.Journal of the Acoustical Society of America, 2006, 119(4), 2027. 30 C522-03, Standard test method for airflow resistance of acoustical mate-rials, 2009. 31 国家质量技术监督局.GB/T 25077-2010声学多孔吸声材料流阻测量, 2010. 32 ISO/DIS 9053-2017, Acoustics determination of static airflow resistance,2017. 33 Tao J, Wang P, Qiu X, et al. Building and Environment, 2015, 94(DEC.PT.2)516. 34 Brown R L, Bolt R H. Journal of the Acoustical Society of America, 1942, 13(4), 337. 35 Fang Q C. Environmental Engineering,2012(S1),183(in Chinese). 方庆川. 环境工程, 2012(S1),183. 36 Gerges S N, Balvedi A M. Applied Acoustics, 1999, 58(4), 403. 37 Zhao Yi. Simulation Analysis and optimization of sound absorption properties of porous materials. Master's Thesis, Chongqing University, China, 2018(in Chinese). 赵毅. 多孔吸声材料吸声性能仿真分析与优化.硕士学位论文, 重庆大学, 2018. 38 Wang L H.Analysis and optimization of sound absorption performance of porous material used in automobile. Master's Thesis, Jilin University, China, 2017(in Chinese). 王连会. 汽车多孔吸声材料吸声性能分析与优化. 硕士学位论文,吉林大学,2017. 39 Bies D A, Hansen C H.Applied Acoustics, 1980, 13(5),357. 40 Wang Y H,Wu H Q,Liu Z M, et al. Journal of Changchun University of Science and Technology, 2018, 41(1),85(in Chinese). 王永华, 武海权, 刘哲明,等.长春理工大学学报:自然科学版, 2018, 41(1),85. 41 Fellah Z E, Fellah M, Sebaa N, et al. Journal of the Acoustical Society of America, 2006, 119(4), 1926. 42 ISO 10534-2—1998, Acoustics determination of sound absorption coefficient and impedance in impedance tubes transfer function method, International Organization for Standardization, 1998 43 Doutres O, Salissou Y, Atalla N, et al. Applied Acoustics, 2010, 71(6), 506. 44 Sun F S. Equivalent model study and performance test of sound absorption calculation for porous material. Master's Thesis, Shandong University of Technology, China, 2019(in Chinese). 孙丰山. 多孔材料吸声计算的等效模型研究与性能测试. 硕士学位论文, 山东理工大学, 2019. 45 Stinson M R, Daigle G A. Journal of the Acoustical Society of America, 1988, 83(6), 2422. 46 Yin Y. Noise and Vibration Control, 1996(3),26(in Chinese). 殷业.噪声与振动控制, 1996(3),26. 47 Champoux Y, Stinson M R,Daigle G A. Journal of the Acoustical Society of America, 1990,89, 910. 48 Allard J F.Le Journal de Physique IV, 1994, 4(C5), 177. 49 Kino N, Ueno T.Applied Acoustics, 2007, 68(11), 1439. 50 Leclaire P, Kelders L, Lauriks W, et al. Journal of Applied Physics, 1996, 80(4), 2009.