Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20110035-11    https://doi.org/10.11896/cldb.20110035
  高分子与聚合物基复合材料 |
多孔吸声材料声学模型及其特征参数测试方法研究进展
于长帅1,2,3, 罗忠1,*, 骆海涛2,3, 何凤霞1
1 东北大学机械工程与自动化学院,沈阳 110819
2 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳 110016
3 中国科学院机器人与智能制造创新研究院,沈阳 110169
Research Progress on Acoustic Model of Porous Sound Absorbing Materials and Measurement Method of Its Characteristic Parameters
YU Changshuai1,2,3, LUO Zhong1,*, LUO Haitao2,3, HE Fengxia1
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
下载:  全 文 ( PDF ) ( 5726KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 噪声是载人航天器的重要环境因素之一,航天器环境噪声升高会直接影响航天员工作和休息,进而影响空间科学任务。然而,以往在轨运行的载人航天器存在较多噪声过大的问题,多孔吸声材料已经在国际空间站应用并取得良好的降噪效果,我国空间站预计2022年底建成,了解声学多孔材的声学模型以及吸声机理对我空间站运营阶段的降噪具有重要的意义。
基于刚性框架假设,多孔吸声材料声学等效模型分为经验模型和唯像模型,Delany-Bazley是常用的经验模型,采用此模型不能对多孔材料吸声的性能提供精确的预测,唯象模型考虑了声波在材料孔隙和空腔中的传播,可以准确预测吸声性能,因此Johnson-Champoux-Allard唯象模型被众多学者应用。流阻、孔隙率、曲率、粘胶特征长度和热特性长度等多孔材料声学特性参数是准确建立多孔材料Johnson-Champoux-Allard模型的关键,流阻测试方法包括直接气流法、声学阻抗管法、交流法和比较法;孔隙率的测试方法分为直接测试方法和声学阻抗管测试方法;曲率、粘性特征长度和热特性长度可以通过超声波进行直接测试,直接测量通常比较复杂、不太可靠并且具有破坏性,反演优化方法是获得多孔材料曲率、粘性特征长度和热特性长度的常用方法。
本文概述了多孔吸声材料在国际空间站的应用情况,综述了多孔吸声材料声学等效模型的研究进展,介绍了多孔吸声材料吸声原理、声学扰动基本方程以及声学属性参数的测试方法,重点介绍了多孔吸声材料声学等效模型中的经验模型和唯像模型,进而对多孔材料声学等效模型中的声学特征参数的测试方法进行详细论述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于长帅
罗忠
骆海涛
何凤霞
关键词:  载人航天  噪声  多孔吸声材料  声学模型  特征参数  阻抗管    
Abstract: Noise is an important environmental factor of manned spacecraft. The increase of spacecraft environmental noise can directly affect astronauts' work and rest, and then affect space science missions. However, there were many problems of excessive noise in the past manned spacecraft. Porous sound-absorbing materials have been applied in the international space station and achieved good noise reduction effect. The Chinese space station is expected to be built in 2022. Understanding the acoustic model and absorption mechanism of acoustic porous materials is of great significance to the application of noise reduction methods in the operation stage of our space station.
The acoustic equivalent model of porous sound-absorbing materials can be divided into empirical models and phenomenological models. The Delany-Bazley model is a commonly used empirical model, which can not provide accurate prediction. The phenomenological model considers the propagation of sound waves in the pores and cavities of materials. The Johnson-Champoux-Allard phenomenological model has been applied by many scholars. Acoustic characteristic parameters including airflow resistivity, porosity, tortuosity, viscous characteristic length and thermal characteristic length of a porous material are the key to establishing JCA model accurately. Airflow resistivity test methods include direct flow me-thod, acoustic impedance tube method, alternating current (AC) method and comparison methods. Porosity test methods are divided into direct test method and acoustic impedance tube test methods. Tortuosity, viscous characteristic length and thermal characteristic length can be directly measured by ultrasonic, and direct measurement is usually more complex, less reliable and destructive. The inversion optimization method is a common method to obtain tortuosity, viscous characteristic length and thermal characteristic length of a porous material.
This paper summarizes the application of porous materials in the international space station and the research progress of the acoustic equivalent model of porous materials, and introduces the sound absorption principle of porous materials, the basic equation of acoustic disturbance and the test methods of acoustic attribute parameters. It focuses on the empirical model and phenomenological model in the acoustic equivalent model of porous materials, and then analyzes the acoustic properties of porous materials in the acoustic equivalent model. The test methods of characteristic parameters are discussed in detail.
Key words:  manned spaceflight    noise    porous materials    equivalent model    characteristic parameters    impedance tube
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TB535+.1  
基金资助: 辽宁省自然基金资助计划(2020-MS-029)
通讯作者:  zhluo@mail.neu.edu.cn   
作者简介:  于长帅,2013年毕业于东北大学,获得工学学士学位,2015年毕业于东北大学,获得工学硕士学位,2019年考入东北大学工程博士。2015年7月至今,就职于中国科学院沈阳自动化研究所,职称为助理研究员,研究方向为振动噪声测试与控制方法。
罗忠,东北大学机械工程与自动化学院教授、博士研究生导师,副院长。“航空动力装备振动及控制”教育部国防重点实验室副主任,主要从事机械动力学与控制方面的理论和试验研究工作。主编和参与撰写著作、机械设计手册和教材等12部,授权国家发明专利17项、软件著作权登记15项,获得教育部科技进步二等奖1项(排名第四)。以第一作者或通讯作者发表学术论文120余篇,其中SCI论文30余篇。
引用本文:    
于长帅, 罗忠, 骆海涛, 何凤霞. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 20110035-11.
YU Changshuai, LUO Zhong, LUO Haitao, HE Fengxia. Research Progress on Acoustic Model of Porous Sound Absorbing Materials and Measurement Method of Its Characteristic Parameters. Materials Reports, 2022, 36(4): 20110035-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110035  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20110035
1 Thirsk R, Kuipers A, Mukai C, et al. Canadian Medical Association Journal, 2009, 180(12),1216.
2 Grosveld F W, Goodman J R, Pilkinton G D.In: Noise-Con 2003, the 2003 National Conference on Noise Control Engineering. Washington DC, 2003, pp.23.
3 O'keefe E, Counter D.In:Space Programs and Technologies Conference and Exhibit. Huntsville AL, 1993, pp.4080.
4 Sellen N, Galland M A, Hilbrunner O.In:8th AIAA/CEAS Aeroacoustics Conference. Colorado, 2002,pp.2504.
5 Delany M E, Bazley E N.Applied Acoustics, 1970, 3(2), 105.
6 Miki Y.Journal of the Acoustical Society of Japan.1990,11(1),19.
7 Champoux Y, Allard J F.Journal of Applied Physics,1991,70(4),1975.
8 Johnson D L, Koplik J, Dashen R, et al. Journal of Fluid Mechanics, 1987, 176(1), 379.
9 Kino N, Ueno T.Applied Acoustics, 2007, 68(11), 1468.
10 Kino N.Applied Acoustics, 2015,96, 153.
11 Kino N, Ueno T.Applied Acoustics, 2008, 69(4), 325.
12 Lafarge D, Lemarinier P, Allard J F, et al. Journal of the Acoustical Society of America, 1997, 102(4), 1995.
13 Biot M A.Journal of the Acoustical Society of America, 1956, 28(2), 168.
14 Biot M A.Journal of the Acoustical Society of America, 1956, 28(2), 179.
15 Ma D Y. Noise and vibration control engineering manual, China Machine Press, China, 2002,pp.1032(in Chinese).
马大猷. 噪声与振动控制工程手册, 机械工业出版社, 2002,pp.1032.
16 Abbad A, Atalla N, Ouisse M, et al. Journal of Sound and Vibration, https://doi.org/10. 1016j.jsv.2019.114873.
17 Wang Y H. Research on sound absorption properties and mechanisms of multi-level bionic coupling materials. Ph.D. Thesis, Jilin University, China, 2014(in Chinese).
王永华. 多级仿生耦合材料吸声性能及机理研究.博士学位论文, 吉林大学, 2014.
18 Goodman J R, Grosveld F W. NASA/SP-2015-624 National Aeronautics and SpaceAdministration, Houston, 2015.
19 Peng M,Zhao X M. Materials Reports A:Research Papers. 2019, 33(11),3669(in Chinese).
彭敏, 赵晓明.材料导报:研究篇, 2019, 33(11),3669.
20 Allard J F. In: Propagation of sound in porous media: modeling sound absorbing materials, Elsevier Applied Science, New York,1993,pp.45.
21 Kim B, Cho S, Min D, et al. Composite Structures, 2016,145(2016) 242.
22 Kidner M R F, Hansen C H. International Journal of Acoustics & Vibrations, 2008, 13(3),112.
23 Utsuno H, Tanaka T, Fujikawa T, et al. Journal of the Acoustical Society of America, 1989, 86(2), 637.
24 Olny X, Panneton R. Journal of the Acoustical Society of America, 2008, 123(2),814.
25 Taban E, Khavanin A, Faridan M, et al. International Journal of Environmental Science and Technology, 2020, 17(1), 39.
26 Atalla Y, Panneton R. Canadian Acoustics, 2005, 33(1), 11.
27 Kino N, Ueno T.Applied Acoustics, 2008, 69(4), 325.
28 Wilson D K.Journal of the Acoustical Society of America, 1993, 94(2), 1136.
29 Panneton R, Olny X.Journal of the Acoustical Society of America, 2006, 119(4), 2027.
30 C522-03, Standard test method for airflow resistance of acoustical mate-rials, 2009.
31 国家质量技术监督局.GB/T 25077-2010声学多孔吸声材料流阻测量, 2010.
32 ISO/DIS 9053-2017, Acoustics determination of static airflow resistance,2017.
33 Tao J, Wang P, Qiu X, et al. Building and Environment, 2015, 94(DEC.PT.2)516.
34 Brown R L, Bolt R H. Journal of the Acoustical Society of America, 1942, 13(4), 337.
35 Fang Q C. Environmental Engineering,2012(S1),183(in Chinese).
方庆川. 环境工程, 2012(S1),183.
36 Gerges S N, Balvedi A M. Applied Acoustics, 1999, 58(4), 403.
37 Zhao Yi. Simulation Analysis and optimization of sound absorption properties of porous materials. Master's Thesis, Chongqing University, China, 2018(in Chinese).
赵毅. 多孔吸声材料吸声性能仿真分析与优化.硕士学位论文, 重庆大学, 2018.
38 Wang L H.Analysis and optimization of sound absorption performance of porous material used in automobile. Master's Thesis, Jilin University, China, 2017(in Chinese).
王连会. 汽车多孔吸声材料吸声性能分析与优化. 硕士学位论文,吉林大学,2017.
39 Bies D A, Hansen C H.Applied Acoustics, 1980, 13(5),357.
40 Wang Y H,Wu H Q,Liu Z M, et al. Journal of Changchun University of Science and Technology, 2018, 41(1),85(in Chinese).
王永华, 武海权, 刘哲明,等.长春理工大学学报:自然科学版, 2018, 41(1),85.
41 Fellah Z E, Fellah M, Sebaa N, et al. Journal of the Acoustical Society of America, 2006, 119(4), 1926.
42 ISO 10534-2—1998, Acoustics determination of sound absorption coefficient and impedance in impedance tubes transfer function method, International Organization for Standardization, 1998
43 Doutres O, Salissou Y, Atalla N, et al. Applied Acoustics, 2010, 71(6), 506.
44 Sun F S. Equivalent model study and performance test of sound absorption calculation for porous material. Master's Thesis, Shandong University of Technology, China, 2019(in Chinese).
孙丰山. 多孔材料吸声计算的等效模型研究与性能测试. 硕士学位论文, 山东理工大学, 2019.
45 Stinson M R, Daigle G A. Journal of the Acoustical Society of America, 1988, 83(6), 2422.
46 Yin Y. Noise and Vibration Control, 1996(3),26(in Chinese).
殷业.噪声与振动控制, 1996(3),26.
47 Champoux Y, Stinson M R,Daigle G A. Journal of the Acoustical Society of America, 1990,89, 910.
48 Allard J F.Le Journal de Physique IV, 1994, 4(C5), 177.
49 Kino N, Ueno T.Applied Acoustics, 2007, 68(11), 1439.
50 Leclaire P, Kelders L, Lauriks W, et al. Journal of Applied Physics, 1996, 80(4), 2009.
[1] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[2] 吕瑞阳, 宋凯, 董世运, 门平, 康学良, 闫世兴, 刘晓亭. 24CrNi合金钢力学性能重构磁滞参量定量评价[J]. 材料导报, 2020, 34(14): 14168-14174.
[3] 张博强, 吴心平, 陈慧勇, 魏凤春, 朱丽峰, 李振涛, 李良. 局域共振型声子晶体在轮边驱动客车上的应用研究初探[J]. 材料导报, 2019, 33(z1): 141-144.
[4] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed