Applying Magnetic Barkhausen Noise to the Detection of Material Anisotropy: a Technological Review
KANG Xueliang1,2, DONG Shiyun2,, WANG Hongbin1, MEN Ping2, XU Binshi2, YAN Shixing2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072 2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
Abstract: Magnetic Barkhausen noise, a microscopic electromagnetic phenomenon generated by the interaction between ferromagnetic material internal structure and magnetic domain is regarded as an important bridge between the microstructure and macroscopic properties of materials. By detecting and analyzing the magnetic Barkhausen noise signal, the structure of the material can be determined indirectly. Based on this principle, magnetic Barkhausen noise analysis has been developed into a widely applied nondestructive testing method. The conventional material is mostly isotropic, that means the magnetic Barkhausen noise signal shall maintain unvarying along the different orientation of the material. Magnetic Barkhausen noise technique can be used to detect hardness, elastic modulus, grain size, phase content, dislocation density and depth of carburized layer, etc. But we may also obtain anisotropic magnetic Barkhausen signals in practical detection, which can be ascribed to a variety of factors, such as the applied external forces and magnetic field (the external factors), and crystal cell para-meters, grain orientation, residual stress, etc. (the internal factors). When the relationship between the external force and the magnetic Barkhausen noise signal is established, the state of the material can be determined through the magnetic Barkhausen noise signal, which is very valuable in practical engineering applications. By establishing the relationship between the internal factors and the magnetic Barkhausen noise signal, researchers can analyzing the magnetic Barkhausen noise signal so as to determine the microstructural state of the material, which is of great significance for the material detection. Therefore, magnetic Barkhausen noise anisotropy detection technology is of great value both in engineering application and in scientific research. This paper introduces the apparatus and corresponding working principles of magnetic Barkhausen anisotropy detection technology, the theore-tical basis and analysis method of magnetic Barkhausen noise. It also summarizes the global typical research efforts which apply magnetic Barkhausen noise anisotropy technic to determining external force or external magnetic field which exert on material, and to study material texture. In addition, we provide a critical discussion upon the application potential of this technology in two fields of great focus, i.e. laser additive manufacturing and laser remanufacturing.
康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
KANG Xueliang, DONG Shiyun, WANG Hongbin, MEN Ping, XU Binshi, YAN Shixing. Applying Magnetic Barkhausen Noise to the Detection of Material Anisotropy: a Technological Review. Materials Reports, 2019, 33(1): 183-190.
Barkhausen H. Physics,1919,z29,401.2 Perez-Benitez J A, Capo-Sanchez J, Anglada-Rivera J, et al. NDT & E International,2008,41(1),53.3 KÜpferling M, Fiorillo F, Basso V, et al. Journal of Magnetism & Magnetic Materials,2008,320(20),e527.4 Blaow M, Evans J T, Shaw B A. Journal of Materials Science,2007,42(12),4364.5 Zhang M L. Journal of the American College of Cardiology,2015,62(11),981.6 Seemuang N, Slatter T. International Journal of Advanced Manufacturing Technology,2017,92(1-4),247.7 Ghanei S, Kashefi M, Mazinani M. Journal of Magnetism & Magnetic Materials,2014,356(356),103.8 Ghanei S, Alam A S, Kashefi M, et al. Materials Science & Engineering A,2014,607(607),253.9 Vashita M, Moorthy V. Journal of Magnetism & Magnetic Materials,2015,393,584.10 Blaow M, Evans J T, Shaw B A. Acta Materialia,2005,53(2),279.11 Sheikh Amiri M, Thielen M, Rabung M, et al. Journal of Magnetism & Magnetic Materials,2014,372(12),16.12 Vergne R, Cotillard J C, Porteseil J L. Signal Processing,1982,4(1),73.13 Grosse-Nobis W. Journal of Magnetism & Magnetic Materials,1977,4(1-4),247.14 Baldwin J A, Pickles G M. Journal of Applied Physics,1972,43(11),4746.15 Williams H J, Shockley W, Kittel C. Physical Review,1950,80(6),1090.16 Baldwin J A, Culler G J. Journal of Applied Physics,1969,40(7),2828.17 Bertotti G, Fiorillo F. Journal of Magnetism & Magnetic Materials,1984,41(1),303.18 Alessandro B, Beatrice C, Bertotti G, et al. Journal of Applied Physics,1990,68(6),2908.19 Alessandro B, Bertotti G, Fiorillo F. Physica Scripta,1989,39(2),256.20 Chikazumi S, Charap S H. Physics of Magnetism, Berlin: Springer,1964.21 Martínez-Ortiz P, Pérez-Benitez J A, Espina-Hernández J H, et al. Journal of Magnetism & Magnetic Materials,2015,374,67.22 Jagadish C, Clapham L, Atherton D L. IEEE Transactions on Magnetics,1990,26(3),1160.23 Langman R. NDT & E International,1991,24(1),48.24 Krause T W, Clapham L, Atherton D L. Journal of Applied Physics,1994,75(12),7983.25 Gauthier J, Krause T W, Atherton D L. NDT & E International,1998,31(1),23.26 Krause T W, Makar J M, Atherton D L. Journal of Magnetism & Magne-tic Materials,1994,137(1-2),25.27 Pérez-Benitez J A, Padovese L R, Capó-Sánchez J, et al. Journal of Magnetism & Magnetic Materials,2003,263(1-2),72.28 Ranjan R, Jiles D C, Rastogi P. IEEE Transactions on Magnetics,1987,23(3),1869.29 He Y, Mehdi M, Hilinski E J, et al. Journal of Magnetism & Magnetic Materials,2018,453,149.30 Stefanita C G, Atherton D L, Clapham L. Acta Materialia,2000,48(13),3545.31 Krause T W, Makar J M, Atherton D L. Journal of Magnetism & Magne-tic Materials,1994,137(1-2),25.32 Campos M A, Capó-Sánchez J, Benítez J P, et al. NDT & E Internatio-nal,2008,41(8),656.33 Krause T W, Pulfer N, Weyman P, et al. IEEE Transactions on Magne-tics,1996,32(5),4764.34 Clapham L, Krause T W, Olsen H, et al. NDT & E International,1995,28(2),73.35 Sagar S P, Kumar B R, Dobmann G, et al. NDT & E International,2005,38(8),674.36 Hausild P, KolarÍK K, KarlÍK M. Materials & Design,2013,44(2),548.37 Campos M A, Capó-Sánchez J, Benítez J P, et al. NDT & E Internatio-nal,2008,41(8),656.38 Caldas-Morgan M, Padovese L R. NDT & E International,2012,45(1),148.39 Capó-sÁnchez J, Pérez-Benitez J, Padovese L R. NDT & E Internatio-nal,2007,40(2),168.40 MartíNez-Ortiz P, Pérez-Benítez J A, Espina-Hernández J H, et al. Journal of Magnetism & Magnetic Materials,2016,401,108.41 Lo C C H, Jakubovics J P, Scruby C B. Journal of Applied Physics,1997,81(8),4069.42 He Y,Mehdi M, Hilinski E J, et al. Journal of Magnetism & Magnetic Materials,2018,453,149.43 Espinahernández J H, Pérezbenítez J A, Caleyo F, et al. Journal of Phy-sics d Applied Physics,2013,46(39),392001.44 Wei H L,Mazumder J, Debroy T. Scientific Reports,2015,5,16446.45 Gusarov A V, Pavlov M, Smurov I. Physics Procedia,2011,12(1),248.46 Brandl E, Heckenberger U, Holzinger V, et al. Materials & Design,2012,34,159.47 Vilaro T, Colin C, Bartout J D, et al. Materials Science & Engineering A,2012,534(1),446.48 Brandt M. Laser Additive manufacturing, Woodhead Publishing,2016.49 Dinda G P, Dasgupta A K, Mazumder J. Scripta Materialia,2012,67(5),503.50 Geiger F, Kunze K, Etter T. Materials Science & Engineering A,2016,661,240.51 Popovich V A, Borisov E V, Popovich A A, et al. Materials & Design,2017,114,441.52 Xu B S, Dong S Y, Zhu S, et al. Jounal of Mechanical Engineering,2012,48(15),96(in Chinese).徐滨士,董世运,朱胜,等.机械工程学报,2012,48(15),96.53 Xu B S, Dong S Y. Laser Remanufacturing Technology, National Defense Industry Press,2016(in Chinese).徐滨士,董世运.激光再制造,国防工业出版社,2016.54 Dong S Y, Yan S X, Xu B S, et al. Chinese Journal of Lasers,2012(12),67(in Chinese).董世运,闫世兴,徐滨士,等.中国激光,2012(12),67.55 Dong S Y, Liu B, Xu B S, et al. Failire Analysis and Prevention,2011,6(1),19(in Chinese).董世运,刘彬,徐滨士,等.失效分析与预防,2011,6(1),19.56 Wu X J, Zhang Q, Shen G T. Chinese Journal of Scientific Instrument,2016,37(8),1698(in Chinese).武新军,张卿,沈功田.仪器仪表学报,2016,37(8),1698.57 Lu C,Wei Y F, Xu W. Chinese Journal of Scientific Instrument,2010,31(10),2272(in Chinese).卢超,魏运飞,徐薇.仪器仪表学报,2010,31(10),2272.58 Krause T W, Clapham L, Pattantyus A, et al. Journal of Applied Physics,1996,79(8),4242.59 Krause T W, Szpunar J A, Birsan M, et al. Journal of Applied Physics,1996,79(6),3156.60 Stefanita C G, Atherton D L, Clapham L. Acta Materialia,2000,48(13),3545.