Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 183-190    https://doi.org/10.11896/cldb.201901022
  材料与可持续发展(二)——材料绿色制造与加工* |
基于磁巴克豪森原理的铁磁材料各向异性检测技术综述
康学良1,2, 董世运2, 汪宏斌1, 门平2, 徐滨士2, 闫世兴2
1 上海大学材料科学与工程学院,上海 200072
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Applying Magnetic Barkhausen Noise to the Detection of Material Anisotropy: a Technological Review
KANG Xueliang1,2, DONG Shiyun2,, WANG Hongbin1, MEN Ping2, XU Binshi2, YAN Shixing2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 2222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁巴克豪森噪声是由铁磁材料内部组织结构与磁畴的相互作用产生的一种微观电磁现象,是连接材料微观组织和宏观性能的重要桥梁,通过检测和分析磁巴克豪森噪声信号能够间接反映材料的组织结构状态。基于此原理,磁巴克豪森噪声技术发展成为一种广泛应用的无损检测方法。
   常规材料大多是各向同性的,意味着沿材料不同取向获得的磁巴克豪森噪声信号理论上是相同的,磁巴克豪森噪声技术可用于检测各向同性材料的硬度、弹性模量、晶粒尺寸、相含量、位错密度和渗碳层深度等。而在实际检测时,磁巴克豪森信号通常是各向异性的,造成这种现象的因素可以分为外部因素(包括外力和外磁场)和内部因素(包括晶胞参数、晶粒取向、残余应力等)。当建立外力和磁巴克豪森噪声信号的关系后,便可以通过磁巴克豪森噪声信号间接检测材料的受力状态,这在实际工程应用中是非常有价值的。通过建立内部因素和磁巴克豪森噪声信号的关系,则能够利用磁巴克豪森噪声技术检测材料的微观组织结构,对于材料的检测和制造工艺技术的反馈都具有重要意义。因此,磁巴克豪森噪声各向异性检测技术,无论是在工程应用领域还是在科研领域都具有重要价值。
   本文介绍了磁巴克豪森各向异性检测技术的仪器及工作原理、磁巴克豪森噪声的理论基础和分析方法,综述了借助磁巴克豪森噪声各向异性检测技术来研究材料受到的外力、外磁场和材料织构的相关进展;同时探讨了该技术在激光增材制造和激光再制造这两个热点领域中的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康学良
董世运
汪宏斌
门平
徐滨士
闫世兴
关键词:  磁巴克豪森噪声  各向异性  内应力  组织  物理性能  激光增材制造    
Abstract: Magnetic Barkhausen noise, a microscopic electromagnetic phenomenon generated by the interaction between ferromagnetic material internal structure and magnetic domain is regarded as an important bridge between the microstructure and macroscopic properties of materials. By detecting and analyzing the magnetic Barkhausen noise signal, the structure of the material can be determined indirectly. Based on this principle, magnetic Barkhausen noise analysis has been developed into a widely applied nondestructive testing method.
The conventional material is mostly isotropic, that means the magnetic Barkhausen noise signal shall maintain unvarying along the different orientation of the material. Magnetic Barkhausen noise technique can be used to detect hardness, elastic modulus, grain size, phase content, dislocation density and depth of carburized layer, etc. But we may also obtain anisotropic magnetic Barkhausen signals in practical detection, which can be ascribed to a variety of factors, such as the applied external forces and magnetic field (the external factors), and crystal cell para-meters, grain orientation, residual stress, etc. (the internal factors). When the relationship between the external force and the magnetic Barkhausen noise signal is established, the state of the material can be determined through the magnetic Barkhausen noise signal, which is very valuable in practical engineering applications. By establishing the relationship between the internal factors and the magnetic Barkhausen noise signal, researchers can analyzing the magnetic Barkhausen noise signal so as to determine the microstructural state of the material, which is of great significance for the material detection. Therefore, magnetic Barkhausen noise anisotropy detection technology is of great value both in engineering application and in scientific research.
This paper introduces the apparatus and corresponding working principles of magnetic Barkhausen anisotropy detection technology, the theore-tical basis and analysis method of magnetic Barkhausen noise. It also summarizes the global typical research efforts which apply magnetic Barkhausen noise anisotropy technic to determining external force or external magnetic field which exert on material, and to study material texture. In addition, we provide a critical discussion upon the application potential of this technology in two fields of great focus, i.e. laser additive manufacturing and laser remanufacturing.
Key words:  magnetic Barkhausen noise    anisotropy    internal stress    microstructure    physical property    laser additive manufacturing
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG115.27  
  TH878  
  TB31  
基金资助: 国家重点研发计划重点专项(2016YFB1100205)
通讯作者:  董世运,在1995年、1997年和2000年于哈尔滨工业大学分别获得学士学位、硕士学位和博士学位,现为陆军装甲兵学院装备再制造技术国防科技重点实验室研究员,主要研究方向为表面工程、激光制造与再制造及其质量无损检测评价等,syd422@sohu.com。   
作者简介:  康学良,2012年于太原理工大学获得学士学位,2016年于内蒙古科技大学获得硕士学位,现为上海大学材料科学与工程学院博士研究生,主要研究方向为电磁无损检测技术,材料力学性能无损检测与评价,激光增材制造技术。
引用本文:    
康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
KANG Xueliang, DONG Shiyun, WANG Hongbin, MEN Ping, XU Binshi, YAN Shixing. Applying Magnetic Barkhausen Noise to the Detection of Material Anisotropy: a Technological Review. Materials Reports, 2019, 33(1): 183-190.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901022  或          http://www.mater-rep.com/CN/Y2019/V33/I1/183
1 Barkhausen H. Physics,1919,z29,401.2 Perez-Benitez J A, Capo-Sanchez J, Anglada-Rivera J, et al. NDT & E International,2008,41(1),53.3 KÜpferling M, Fiorillo F, Basso V, et al. Journal of Magnetism & Magnetic Materials,2008,320(20),e527.4 Blaow M, Evans J T, Shaw B A. Journal of Materials Science,2007,42(12),4364.5 Zhang M L. Journal of the American College of Cardiology,2015,62(11),981.6 Seemuang N, Slatter T. International Journal of Advanced Manufacturing Technology,2017,92(1-4),247.7 Ghanei S, Kashefi M, Mazinani M. Journal of Magnetism & Magnetic Materials,2014,356(356),103.8 Ghanei S, Alam A S, Kashefi M, et al. Materials Science & Engineering A,2014,607(607),253.9 Vashita M, Moorthy V. Journal of Magnetism & Magnetic Materials,2015,393,584.10 Blaow M, Evans J T, Shaw B A. Acta Materialia,2005,53(2),279.11 Sheikh Amiri M, Thielen M, Rabung M, et al. Journal of Magnetism & Magnetic Materials,2014,372(12),16.12 Vergne R, Cotillard J C, Porteseil J L. Signal Processing,1982,4(1),73.13 Grosse-Nobis W. Journal of Magnetism & Magnetic Materials,1977,4(1-4),247.14 Baldwin J A, Pickles G M. Journal of Applied Physics,1972,43(11),4746.15 Williams H J, Shockley W, Kittel C. Physical Review,1950,80(6),1090.16 Baldwin J A, Culler G J. Journal of Applied Physics,1969,40(7),2828.17 Bertotti G, Fiorillo F. Journal of Magnetism & Magnetic Materials,1984,41(1),303.18 Alessandro B, Beatrice C, Bertotti G, et al. Journal of Applied Physics,1990,68(6),2908.19 Alessandro B, Bertotti G, Fiorillo F. Physica Scripta,1989,39(2),256.20 Chikazumi S, Charap S H. Physics of Magnetism, Berlin: Springer,1964.21 Martínez-Ortiz P, Pérez-Benitez J A, Espina-Hernández J H, et al. Journal of Magnetism & Magnetic Materials,2015,374,67.22 Jagadish C, Clapham L, Atherton D L. IEEE Transactions on Magnetics,1990,26(3),1160.23 Langman R. NDT & E International,1991,24(1),48.24 Krause T W, Clapham L, Atherton D L. Journal of Applied Physics,1994,75(12),7983.25 Gauthier J, Krause T W, Atherton D L. NDT & E International,1998,31(1),23.26 Krause T W, Makar J M, Atherton D L. Journal of Magnetism & Magne-tic Materials,1994,137(1-2),25.27 Pérez-Benitez J A, Padovese L R, Capó-Sánchez J, et al. Journal of Magnetism & Magnetic Materials,2003,263(1-2),72.28 Ranjan R, Jiles D C, Rastogi P. IEEE Transactions on Magnetics,1987,23(3),1869.29 He Y, Mehdi M, Hilinski E J, et al. Journal of Magnetism & Magnetic Materials,2018,453,149.30 Stefanita C G, Atherton D L, Clapham L. Acta Materialia,2000,48(13),3545.31 Krause T W, Makar J M, Atherton D L. Journal of Magnetism & Magne-tic Materials,1994,137(1-2),25.32 Campos M A, Capó-Sánchez J, Benítez J P, et al. NDT & E Internatio-nal,2008,41(8),656.33 Krause T W, Pulfer N, Weyman P, et al. IEEE Transactions on Magne-tics,1996,32(5),4764.34 Clapham L, Krause T W, Olsen H, et al. NDT & E International,1995,28(2),73.35 Sagar S P, Kumar B R, Dobmann G, et al. NDT & E International,2005,38(8),674.36 Hausild P, KolarÍK K, KarlÍK M. Materials & Design,2013,44(2),548.37 Campos M A, Capó-Sánchez J, Benítez J P, et al. NDT & E Internatio-nal,2008,41(8),656.38 Caldas-Morgan M, Padovese L R. NDT & E International,2012,45(1),148.39 Capó-sÁnchez J, Pérez-Benitez J, Padovese L R. NDT & E Internatio-nal,2007,40(2),168.40 MartíNez-Ortiz P, Pérez-Benítez J A, Espina-Hernández J H, et al. Journal of Magnetism & Magnetic Materials,2016,401,108.41 Lo C C H, Jakubovics J P, Scruby C B. Journal of Applied Physics,1997,81(8),4069.42 He Y,Mehdi M, Hilinski E J, et al. Journal of Magnetism & Magnetic Materials,2018,453,149.43 Espinahernández J H, Pérezbenítez J A, Caleyo F, et al. Journal of Phy-sics d Applied Physics,2013,46(39),392001.44 Wei H L,Mazumder J, Debroy T. Scientific Reports,2015,5,16446.45 Gusarov A V, Pavlov M, Smurov I. Physics Procedia,2011,12(1),248.46 Brandl E, Heckenberger U, Holzinger V, et al. Materials & Design,2012,34,159.47 Vilaro T, Colin C, Bartout J D, et al. Materials Science & Engineering A,2012,534(1),446.48 Brandt M. Laser Additive manufacturing, Woodhead Publishing,2016.49 Dinda G P, Dasgupta A K, Mazumder J. Scripta Materialia,2012,67(5),503.50 Geiger F, Kunze K, Etter T. Materials Science & Engineering A,2016,661,240.51 Popovich V A, Borisov E V, Popovich A A, et al. Materials & Design,2017,114,441.52 Xu B S, Dong S Y, Zhu S, et al. Jounal of Mechanical Engineering,2012,48(15),96(in Chinese).徐滨士,董世运,朱胜,等.机械工程学报,2012,48(15),96.53 Xu B S, Dong S Y. Laser Remanufacturing Technology, National Defense Industry Press,2016(in Chinese).徐滨士,董世运.激光再制造,国防工业出版社,2016.54 Dong S Y, Yan S X, Xu B S, et al. Chinese Journal of Lasers,2012(12),67(in Chinese).董世运,闫世兴,徐滨士,等.中国激光,2012(12),67.55 Dong S Y, Liu B, Xu B S, et al. Failire Analysis and Prevention,2011,6(1),19(in Chinese).董世运,刘彬,徐滨士,等.失效分析与预防,2011,6(1),19.56 Wu X J, Zhang Q, Shen G T. Chinese Journal of Scientific Instrument,2016,37(8),1698(in Chinese).武新军,张卿,沈功田.仪器仪表学报,2016,37(8),1698.57 Lu C,Wei Y F, Xu W. Chinese Journal of Scientific Instrument,2010,31(10),2272(in Chinese).卢超,魏运飞,徐薇.仪器仪表学报,2010,31(10),2272.58 Krause T W, Clapham L, Pattantyus A, et al. Journal of Applied Physics,1996,79(8),4242.59 Krause T W, Szpunar J A, Birsan M, et al. Journal of Applied Physics,1996,79(6),3156.60 Stefanita C G, Atherton D L, Clapham L. Acta Materialia,2000,48(13),3545.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[5] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[9] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[10] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[11] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[12] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[13] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[14] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[15] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed