Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20110082-6    https://doi.org/10.11896/cldb.20110082
  无机非金属及其复合材料 |
DBR结构设计与GaInP/GaInAs/Ge太阳电池性能关系
高慧1,2, 杨瑞霞1,*
1 河北工业大学电子信息工程学院,天津 300401
2 中国电子科技集团公司第十八研究所,天津 300384
The Relationship Between the Design of the DBR Structure and the Performance of GaInP/GaInAs/Ge Solar Cell
GAO Hui1,2, YANG Ruixia1,*
1 School of Electronic Information Engineering ,Hebei University of Technology , Tianjin 300401, China
2 The 18th Research Institute of China Electronics Technology Group Corporation, Tianjin 300384, China
下载:  全 文 ( PDF ) ( 2314KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间太阳电池采用分布式布拉格反射(DBR)结构作为GaInAs中间子电池的背反射器,可以降低基区的厚度,进而提高电池的抗辐射能力。DBR的光学反射特性对该子电池的各项性能有很大的影响。本研究制备了三种不同反射特性的Al0.9Ga0.1As/Al0.1Ga0.9As DBR结构,并将它们应用在同一种GaInP/GaInAs/Ge晶格匹配的太阳电池,作为GaInAs中间子电池的背反射器。测试研究其对电池的光学反射率、光伏性能和辐射衰降性能的影响。研究表明:材料带隙分别为1.87 eV/1.40 eV/0.67 eV的三结太阳电池,随着DBR的中心波长从865 nm→875 nm→885 nm进行微调,这三种电池的光学反射率、光伏性能和辐射衰降性能均表现出规律性变化。电池的反射率出现了规律性红移,初始光伏效率逐渐升高,地球同步轨道剂量电子轰击实验后,电池的最终辐照衰降率也逐渐升高。同时,适当将DBR反射范围向长波方向微调,可以获得初始效率更高的电池,而寿命末期效率几乎相同,这一研究结果对高轨道空间项目全生命周期内的应用有很大的意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高慧
杨瑞霞
关键词:  三结太阳电池  分布式布拉格反射  中心反射波长    
Abstract: The space solar cell adopts the distributed Bragg reflection (DBR) structure as the back reflector of the GaInAs subcell, which can reduce the thickness of the base region, thereby improving the radiation resistance of the whole structure. The optical reflection characteristics of DBR have a great influence on various performances of the subcells. In this study, three Al0.9Ga0.1As/Al0.1Ga0.9As DBR structures with different reflection characteristics were prepared and applied to the same GaInP/GaInAs/Ge lattice-matched solar cell as the back reflector of a GaInAs subcell. The research analyzes its influence on the optical reflectivity, photovoltaic performance and radiation attenuation performance of the tandem solar cells. The results show that,for solar cells with a material band gap of 1.87 eV/1.40 eV/0.67 eV, as the center reflection wavelength of the DBR is fine-tuned from 865 nm to 875 nm, and then 885 nm, the optical reflectance, photovoltaic performance and the radiation attenuation performance show regular changes. The reflectivity of the cells showed a regular red shift, and the initial photovoltaic efficiency performance changed from low to high. After the geosynchronous orbital dose electron bombardment experiment, the final radiation decay rate of the cells changed from low to high. At the same time, properly adjusting the reflection range of the DBR to the long-wave direction can obtain a higher initial efficiency, and the efficiency at the end of life has not significantly deteriorated, which has great significance for the application throughout the life cycle of a space project.
Key words:  triple junction solar cell    distributed bragg reflection    center reflection wavelength
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TM914.4  
通讯作者:  yangrx@hebut.edu.cn   
作者简介:  高慧,河北工业大学博士研究生,就职于中国电子科技集团公司第十八研究所,主要从事高效GaAs太阳电池的研究。
杨瑞霞,河北工业大学教授,博士研究生导师,主要从事化合物半导体器件的研究。
引用本文:    
高慧, 杨瑞霞. DBR结构设计与GaInP/GaInAs/Ge太阳电池性能关系[J]. 材料导报, 2022, 36(4): 20110082-6.
GAO Hui, YANG Ruixia. The Relationship Between the Design of the DBR Structure and the Performance of GaInP/GaInAs/Ge Solar Cell. Materials Reports, 2022, 36(4): 20110082-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110082  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20110082
1 Zhang M Y, Guo Z, Sun L J, et al. Journal of Infrared and Millimeter Waves, 2018,37(5),518.
2 Green M A, Dunlop E D, Hohl-Ebinger J, et al. Progress in Photovol-taics: Research and Applications, 2020, 28(7), 629.
3 Mintairov S A, Andreev V M, Emelyanov V M, et al. Semiconductors, 2010, 44(8), 1084.
4 Salzberger M, Nömayr C, Lugli P, et al. Progress in Photovoltaics: Research and Applications, 2017, 25(9), 773.
5 Shvarts M Z, Chosta O I, Khvostikov V P, et al. In:Proceedings of the Fifth European Space Power Conference (ESPC). 1998, pp.507.
6 Lantratov V M, Emelyanov V M, Kalyuzhnyy N A, et al. Advances in Science and Technology. Trans Tech Publications Ltd, 2010, 74, 225.
7 Tobin S P, Vernon S M, Sanfacon M M, et al. In: 22nd IEEE Photovoltaic Specialists Conference. Las Vegas, 1991, pp.147.
8 Shvarts M Z, Chosta O I, Kochnev I V, et al. Solar Energy Materials and Solar Cells, 2001, 68(1), 105.
9 Emelyanov V M, Kalyuzhniy N A, Mintairov S A, et al. Semiconductors, 2010, 44(12), 1600.
10 Skachkov A F. Optoelectronics, Instrumentation and Data Processing, 2014, 50(4), 423.
11 Fahim N F, Ouyang Z, Jia B, et al. Applied Physics Letters, 2012, 101(26), 261102.
12 Mizutani M, Teramae F, Kobayashi O, et al. Physica Status Solidi C, 2006, 3(3), 659.
[1] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[2] 刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
[3] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[4] 袁清堂, 于艳敏, 宋旭锋. 基于YD2-o-C8的高效卟啉染料敏化剂的研究进展[J]. 材料导报, 2021, 35(9): 9210-9217.
[5] 侯晨阳, 付明, 刘雷, 尹光, 汪小红, 吕文中, 范琳. 玻璃粉对PERC太阳能电池铝电极结构和性能的影响[J]. 材料导报, 2020, 34(22): 22005-22009.
[6] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[7] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[8] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[9] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[10] 方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
[11] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[12] 王璐, 郭杰, 郝瑞亭, 顾康, 刘斌, 王远方舟, 孙帅辉. ZnS溅射功率对Cu2ZnSnS4薄膜附着性及太阳电池性能的影响[J]. 材料导报, 2019, 33(Z2): 24-27.
[13] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[14] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[15] 沈韬, 柴鲜花, 孙淑红, 朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed