Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9210-9217    https://doi.org/10.11896/cldb.19120182
  高分子与聚合物基复合材料 |
基于YD2-o-C8的高效卟啉染料敏化剂的研究进展
袁清堂, 于艳敏*, 宋旭锋
北京工业大学环境化工系,绿色催化与分离北京市重点实验室,北京 100124
Advances in High Efficiency Porphyrin Dyes Based on YD2-o-C8
YUAN Qingtang, YU Yanmin*, SONG Xufeng
Department of Environmental Chemical Engineering, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 3028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属卟啉较强的配位能力和可以灵活调节的结构使其在染料敏化太阳能电池(DSSC)的敏化剂研究中受到广泛关注,其中锌卟啉染料敏化剂YD2-o-C8因具有较高的摩尔吸光系数和环境友好等特点而成为研究热点。但YD2-o-C8及其衍生物在应用中仍然存在一些不足:(1)羧基锚定基团易脱附,使染料不稳定;(2)染料敏化剂在近红外光区较低的吸收强度使光电转换性能降低,限制了其大规模的生产和应用;(3)易自聚的染料敏化剂缩短染料敏化太阳能电池的使用寿命,降低光电转换效率。
近年来以锌卟啉染料敏化剂YD2-o-C8为基础,通过改变电子供体的结构、π共轭桥的结构和电子受体的结构合成了众多高性能的D-π-A结构的衍生卟啉染料敏化剂。通过改变电子供体基团出现了WW-6、NCH3-YD2等染料敏化剂;通过改变π共轭桥出现了YD2-II-CA、PorCND1A1等染料敏化剂;通过改变电子受体锚定基团出现了YD2-o-C8T、MH1等染料敏化剂。这些染料敏化剂分子拓展了B带和Q带的吸收范围,提升了近红外光区的吸收强度,进而提升了染料敏化太阳能电池的光电转换效率。甚至有的染料敏化剂在稳定性和使用寿命等方面超越了YD2-o-C8,使染料敏化剂家族的发展焕然一新。
本文综述了D-π-A构型的锌卟啉染料敏化剂YD2-o-C8及其衍生物在实验及理论方面的研究进展,重点介绍了YD2-o-C8在电子供体基团、π共轭桥、电子受体锚定基团三方面的改进及其对光电转换性能的影响,并展望了卟啉染料敏化剂的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁清堂
于艳敏
宋旭锋
关键词:  卟啉  染料敏化剂  电子供体  π共轭桥  电子受体    
Abstract: Metalloporphyrins have attracted much attention in the field of sensitizers for dye-sensitized solar cells (DSSC) due to their strong coordination ability and flexible structure. Zinc porphyrin dye sensitizer YD2-o-C8 has become a research hotspot due to its high molar absorption coefficient and environmental friendliness. However, YD2-o-C8 and its derivatives still have some shortcomings in the application: (1) the carboxyl anchoring group is easy to desorb, which makes the dye unstable; (2) the low absorption intensity of dye sensitizer in the near-infrared region reduces the photoelectric conversion performance, which limits its large-scale production and application; (3) the easily self-polymerized dye sensitizer can shorten the service life and reduce the photoelectric conversion efficiency of dye-sensitized solar cells.
In recent years, based on zinc porphyrin dye sensitizer YD2-o-C8, many derivative porphyrin dye sensitizers with D-π-A structure have been synthesized by changing the structure of electron donor, electron acceptor and conjugated π-bridge. Dye sensitizers such as WW-6 and NCH3-YD2 appeared by changing the electron donor group. Dye sensitizers such as YD2-II-CA and PorCND1A1 appeared by changing the conjugate π-bridge. Dye sensitizers such as YD2-o-C8T and MH1 are produced by changing the electron-acceptor and anchoring group. These dye sensitizers expand the absorption range of B band and Q band, improve the absorption intensity of near-infrared region, and then improve the photoelectric conversion efficiency of dye-sensitized solar cells. Even some dye sensitizers surpass YD2-o-C8 in stability and service life, which makes the development of dye sensitizer family take on a new look.
In this paper, the experimental and theoretical progress of D-π-A zinc porphyrin dye sensitizer YD2-o-C8 and its derivatives are reviewed. The improvement of YD2-o-C8 in electron donor group, conjugated π-bridge and electron-acceptor and anchoring group and its influence on the photoelectric conversion performance are emphasized. The development prospect of porphyrin dye sensitizer is also prospected.
Key words:  porphyrin    dye sensitizer    electron donor    conjugated π-bridge    electron acceptor
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金面上项目(21376010;21776021);北京市属高校高水平教师队伍建设支持计划(IDHT20180504)
通讯作者:  ymyu@bjut.edu.cn   
作者简介:  袁清堂,2018年7月毕业于青岛农业大学,获得工学学士学位。现为北京工业大学环境化工系硕士研究生,在于艳敏副研究员的指导下进行研究。目前主要研究领域为卟啉染料敏化太阳能电池。
于艳敏,北京工业大学环境与生命学部副研究员、硕士研究生导师。主要从事卟啉化合物的理论与计算研究。
引用本文:    
袁清堂, 于艳敏, 宋旭锋. 基于YD2-o-C8的高效卟啉染料敏化剂的研究进展[J]. 材料导报, 2021, 35(9): 9210-9217.
YUAN Qingtang, YU Yanmin, SONG Xufeng. Advances in High Efficiency Porphyrin Dyes Based on YD2-o-C8. Materials Reports, 2021, 35(9): 9210-9217.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120182  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9210
1 Hoffert M I, Caldeira K, Benford G, et al. Science,2002,298(5595),981.
2 Chu S, Majumdar A. Nature,2012,488(7411),294.
3 Campbell W M, Burrell A K, Officer D L, et al. Coordination Chemistry Reviews,2004,248(13-14),1363.
4 Wang Q, Campbell W M, Bonfantani E E, et al. Journal of Physical Chemistry B,2005,109(32),15397.
5 Hasselman G M, Watson D F, Stromberg J R, et al. Journal of Physical Chemistry B,2006,110(50),25430.
6 Grätzel M, O'Regan B. Nature,1991,353(6346),737.
7 Tsao H N, Yella A, Lee H W, et al. Science,2011,334(6056),629.
8 Xu J, Zhang H, Wang L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2010,76(2),239.
9 Mathew S, Gao P, Yella A, et al. Nature Chemistry,2014,6(3),242.
10 Luo J, Zhang J, Huang K W, et al. Journal of Materials Chemistry A,2016,4(21),8428.
11 Higashino T, Fujimori Y, Sugiura K, et al. Angewandte Chemie International Edition,2015,54(31),9052.
12 Yu P, Zhang F Y, Li M, et al. Journal of Materials Science,2015,50(22),7333.
13 Ciofini I, Le Bahers T, Adamo C, et al. Journal of Physical Chemistry C,2012,116(22),11946.
14 Xie Y S, Tang Y Y, Wu W J, et al. Journal of the American Chemical Society,2015,137(44),14055.
15 Zhao L, Wagner P, van der Salm H, et al. ACS Applied Materials & Interfaces,2015,7(39),22078.
16 Xie M, Bai F Q, Wang J J, et al. Physical Chemistry Chemical Physics,2018,20(5),3741.
17 Hsieh C P, Lu H P, Chiu C L, et al. Journal of Materials Chemistry,2010,20(6),1127.
18 Lee C W, Lu H P, Lan C M, et al. Chemistry—A European Journal,2009,15(6),1403.
19 Li X Y, Zhang C R, Yuan L H, et al. European Physical Journal D,2016,70(10),211.
20 Kang G J, Song C, Ren X F. Molecules,2016,21(12),1618.
21 Liu Y C, Chou H H, Ho F Y, et al. Journal of Materials Chemistry A,2016,4(30),11878.
22 Pan B, Zhu Y Z, Ye D, et al. Dyes and Pigments,2018,150,223.
23 Pellejà L, Kumar C V, Clifford J N, et al. Journal of Physical Chemistry C,2014,118(30),16504.
24 Wang C L, Lan C M, Hong S H, et al. Energy & Environmental science,2012,5(5),6933.
25 Han L H, Zhang C R, Zhe J W, et al. International Journal of Molecular Sciences,2013,14(10),20171.
26 Shalabi A S, El Mahdy A M, Assem M M, et al. Molecular Physics,2014,112(1),22.
27 Shalabi A S, El Mahdy A M, Taha H O, et al. Journal of Physics and Chemistry of Solids,2015,76,22.
28 Shalabi A S, El Mahdy A M, Assem M M, et al. Journal of Nanoparticle Research,2014,16(9),2579.
29 Kurumisawa Y, Higashino T, Nimura S, et al. Journal of the American Chemical Society,2019,141(25),9910.
30 Sun X, Su J L, Zhu S B, et al. Fine Chemicals,2015,32(10),1167(in Chinese).
孙晓,苏建利,朱生勃,等.精细化工,2015,32(10),1167.
31 Haid S, Marszalek M, Mishra A, et al. Advanced Functional Materials,2012,22(6),1291.
32 Chen L, Tang X, Jia K, et al. Chinese Journal of Organic Chemistry,2016,36(9),2197(in Chinese).
陈垒,唐翔,贾坤,等.有机化学,2016,36(9),2197.
33 Qian X, Lu L, Zhu Y Z, et al. RSC Advances,2016,6(11),9057.
34 Hu W X, Yu P, Zhang Z M, et al. Journal of Materials Science,2017,52(3),1235.
35 Lee G H, Kim Y S. Molecular Crystals and Liquid Crystals,2017,645(1),168.
36 Santhanamoorthi N, Lo C M, Jiang J C. Journal of Physical Chemistry Letters,2013,4(3),524.
37 Karthikeyan S, Lee J Y. Journal of Physical Chemistry A,2013,117(42),10973.
38 Jin X Y, Li D Y, Sun L B, et al. RSC Advances,2018,8(35),19804.
39 Pan T Y, Reddy N M, Rajan Y C, et al. Physical Chemistry Chemical Physics,2013,15(21),8409.
40 Zhang M D, Jia H L, Ju X H, et al. Phy-sical Chemistry Chemical Phy-sics,2015,17(25),16334.
41 Zhou H, Ji J M, Kang S H, et al. Journal of Materials Chemistry C,2019,7(10),2843.
42 Keawin T, Tarsang R, Sirithip K, et al. Dyes and Pigments,2017,136,697.
43 Zhang L, Cole J M. ACS Applied Materials & Interfaces,2015,7(6),3427.
44 Wu C H, Pan T Y, Hong S H, et al. Chemical Communications,2012,48(36),4329.
45 Seo K D, Choi I T, Kim H K. Chemistry—A European Journal,2015,21(42),14804.
46 Jia Y G, Gou F L, Fang R, et al. Chinese Journal of Chemistry,2014,32(6),513.
47 Kim B G, Chung K, Kim J. Chemistry—A European Journal,2013,19(17),5220.
48 Zhu H C, Zhang J, Wang Y L. Applied Surface Science,2018,433,1137.
49 Mai C L, Hsieh C H, Moehl T, et al. ACS Applied Materials & Interfaces,2015,7(27),14975.
50 Higashino T, Kurumisawa Y, Cai N, et al. Chemsuschem,2017,10(17),3347.
51 Lin S Y, Syu Y K, Tingare Y, et al. Molecules,2016,21(8),1025.
52 Higashino T, Nimura S, Sugiura K, et al. ACS Omega,2017,2(10),6958.
53 Jiang J, Spies J A, Swierk J R, et al. Journal of Physical Chemistry C,2018,122(25),13529.
54 Lu Y Y, Song H L, Li X, et al. ACS Applied Materials & Interfaces,2019,11(5),5046.
55 Higashino T, Kawamoto K, Sugiura K, et al. ACS Applied Materials & Interfaces,2016,8(24),15379.
56 Zhang X F, Jia Y J, Zhao D N, et al. Chemistry Select,2017,2(14),4084.
57 Ambre R, Chen K B, Yao C F, et al. Journal of Physical Chemistry C,2012,116(22),11907.
58 Ambre R B, Mane S B, Chang G F, et al. ACS Applied Materials & Interfaces,2015,7(3),1879.
[1] 孙艳兵, 吕日文, 韩雪雯, 钟玮鸿, 黄剑, 刘畅, 戴荧, 曹小红. 铀(Ⅵ)在卟啉基MOF上的吸附行为[J]. 材料导报, 2020, 34(10): 10108-10113.
[2] 姬东方, 史婷婷, 常欢, 宋旭锋, 于艳敏. 卟啉分子识别中的非共价键相互作用[J]. 材料导报, 2018, 32(17): 3068-3075.
[3] 史婷婷, 姬东方, 于艳敏. 卟啉聚集行为的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 46-52.
[4] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed