Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3068-3075    https://doi.org/10.11896/j.issn.1005-023X.2018.17.020
  高分子与聚合物基复合材料 |
卟啉分子识别中的非共价键相互作用
姬东方, 史婷婷, 常欢, 宋旭锋, 于艳敏
北京工业大学化学化工系,绿色催化与分离北京市重点实验室,北京 100124
Non-covalent Interaction in Molecular Recognition of Porphyrin:an Overview
JI Dongfang, SHI Tingting, CHANG Huan, SONG Xufeng, YU Yanmin
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 1376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 卟啉由于其特殊的分子识别性能在超分子材料化学领域得到了广泛的应用。本文综述了近年来卟啉化合物的分子识别研究,详细介绍了卟啉化合物进行分子识别过程中的非共价键相互作用,重点探讨了氢键、配位、π-π堆积以及静电等相互作用在卟啉分子识别中的作用,并对卟啉分子识别的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姬东方
史婷婷
常欢
宋旭锋
于艳敏
关键词:  卟啉  分子识别  非共价键  相互作用    
Abstract: Porphyrins have been widely used in the field of supramolecular chemistry due to their special molecular recognition properties. This paper provides a comprehensive review about the present researches on the molecular recognition of porphyrin compounds. The non-covalent interactions in molecular recognition progress of porphyrin compounds are introduced in detail. In particular, the hydrogen bonding, coordination, π-π stacking and electrostatic interaction are discussed with emphasis. In addition, the potential development of porphyrin molecular recognition is proposed.
Key words:  porphyrin    molecular recognition    non-covalent    interaction
                    发布日期:  2018-09-19
ZTFLH:  O64  
基金资助: 国家自然科学基金面上项目(21376010;21646013;21776021);北京市教育委员会科技计划面上项目(km201410005007); 北京市自然科学基金面上项目(2152012)
通讯作者:  于艳敏: 博士,副研究员,主要从事计算化学方面研究 E-mail:ymyu@bjut.edu.cn   
作者简介:  姬东方:女,1989年生,硕士研究生,主要从事卟啉化合物的理论与模拟研究
引用本文:    
姬东方, 史婷婷, 常欢, 宋旭锋, 于艳敏. 卟啉分子识别中的非共价键相互作用[J]. 材料导报, 2018, 32(17): 3068-3075.
JI Dongfang, SHI Tingting, CHANG Huan, SONG Xufeng, YU Yanmin. Non-covalent Interaction in Molecular Recognition of Porphyrin:an Overview. Materials Reports, 2018, 32(17): 3068-3075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.020  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3068
1 Peng Y L, Wang S J. Molecular recognition of porphyrin and metal-porphyrin[J].Journal of Langfang Teachers College,2005(4):100(in Chinese).
彭玉苓,王树军.卟啉的分子识别研究进展[J].廊坊师范学院学报,2005(4):100.
2 Iimura Y, Fukuyama M, Hibara A, et al. Enhanced chiral recognition by beta-cyclodextrin at liquid/liquid interfaces as revealed by chromatographic and interfacial tension measurements[J].Journal of Colloid and Interface Science,2017:508:469.
3 Liao W, Chuang M, Ho J A. Electrochemical sensor for multiplex screening of genetically modified DNA: Identification of biotech crops by logic-based biomolecular analysis[J].Biosensors and Bioelectronics,2013,50:414.
4 Zhang D W, Martinez A, Dutasta J P. Emergence of hemicryptophanes: From synthesis to applications for recognition, molecular machines, and supramolecular catalysis[J].Chemical Reviews,2017,117:4900.
5 Nandre K P, Bhosale S V, Krishna K, et al. A phosphonic acid appended naphthalene diimide motif for self-assembly into tunable nanostructures through molecular recognition with arginine in water[J].Chemical Communications,2013,49(48):5444.
6 Wickstrom L, He P, Gallicchio E, et al. Large scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process[J].Journal of Chemical Theory and Computation,2013,9(7):3136.
7 Dong S Y, Gao L Y, Chen J Z, et al. A supramolecular polymer formed by the combination of crown ether-based and charge-transfer molecular recognition[J].Polymer Chemistry,2013,4(4):882.
8 Moriwaki Y, Caaveiro J M M, Tanaka Y, et al. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of staphylococcus aureus[J].Biochemistry,2011,50(34):7311.
9 Ghosh S, Pradhan S K, Kar A, et al. Molecular basis of recognition of quadruplexes human telomere and c-myc promoter by the putative anticancer agent sanguinarine[J].Biochimica ET Biophysica Acta-Genral Subjects,2013,1830(8):4189.
10 Diaz C, Catalan-Toledo J, Flores M E, et al. Dispersion of the photosensitizer 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin by the amphiphilic polymer poly (vinylpirrolidone) in highly porous solid materials designed for photodynamic therapy[J].Journal of Physical Chemistry B,2017,121(30):7373.
11 Shi T T, Ji D F, Yu Y M. Advances in porphyrin aggregation beha-vior[J].Materials Review A:Review Papers,2017,31(5):46(in Chinese).
史婷婷,姬东方,于艳敏.卟啉聚集行为的研究进展[J].材料导报:综述篇,2017,31(5):46.
12 Jintoku H, Takafuji M, Oda R, et al. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel[J].Chemical Communications,2012,48(40):4881.
13 Kalenius E, Koivukorpi J, Kolehmainen E, et al. Noncovalent saccharide recognition by means of a tetrakis(bile acid)-porphyrin conjugate: Selectivity, cooperation, and stability[J].European Journal of Organic Chemistry,2010,2010(6):1052.
14 Xu H, Yu D Y, Que G H, et al. Study on axial coordination of meta-lloporphyrins with Lewis bases by UV-VIS spectrophotometry[J].Acta Petrolei Sinica (Petroleum Processing Section),2002,18(6):61(in Chinese).
徐海,于道永,阙国和,等.紫外可见分光光度法研究金属卟啉与Lewis碱性溶剂的轴向配位作用[J].石油学报(石油加工),2002,18(6):61.
15 Whittington C L, Maza W A, Woodcock H L, et al. Understanding ion sensing in Zn (Ⅱ) porphyrins: Spectroscopic and computational studies of nitrite/nitrate binding[J].Inorganic Chemistry,2012,51(8):4756.
16 Bao X P, Zhang H, Zhang Z, et al. Synthesis of a novel doubly strapped zinc porphyrin and its recognition property for anions[J].Inorganic Chemistry Communications,2007,10(6):728.
17 Mizutani T, Ema T, Yoshida T, et al. Recognition of alpha-amino acid esters by zinc porphyrin derivatives via coordination and hydrogen bonding interactions. Evidence for two-point fixation from thermodynamic and induced circular dichroism spectroscopic studies[J].Inorganic Chemistry,1993,32(10):2072.
18 Mizutani T, Murakami T, Ogoshi H. Dynamics of molecular recognition of multi-point host-guest complex[J].Tetrahedron Letters,1996,37(30):5369.
19 Imai H, Nakagawa S, Kyuno E. Recognition of axial ligands by a zinc porphyrin host on the basis of nonpolar interligand interaction[J].Journal of the American Chemical Society,1992,114(17):6719.
20 Imai H, Munakata H, Uemori Y, et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J].Inorganic Chemistry,2004,43(4):1211.
21 Kishida T, Fujita N, Hirata O, et al. Axial coordination changes the morphology of porphyrin assemblies in an organogel system[J].Organic & Biomolecular Chemistry,2006,4(10):1902.
22 Cao J, Liu J C, Chen L W, et al. Two new self-assemblies of two zinc porphyrin with isonicotinic acid by metal-ligand axial coordination and their applications in supramolecular solar cell[J].Tetrahedron Letters,2013,54(29):3851.
23 Achey D, Meyer G J. Ligand coordination and spin crossover in a nickel porphyrin anchored to mesoporous TiO2 thin films[J].Inorganic Chemistry,2013,52(16):9574.
24 Koo J, Cho J J, Yang J H, et al. Surface modification of zinc oxide nanorods with Zn-porphyrin via metal-ligand coordination for photovoltaic applications[J].Bulletin of the Korean Chemical Society,2012,33(2):636.
25 Wu X, Starnes S D. l-Nipecotic acid-porphyrin derivative: A chiral host with introverted functionality for chiral recognition[J].Organic Letters,2012,14(14):3652.
26 Monnereau C, Rebilly J N, Reinaud O. Synthesis and first studies of the host-guest and substrate recognition properties of a porphyrin-tethered Calix[6] arene ditopic ligand[J].European Journal of Organic Chemistry,2011,2011(1):166.
27 Kim Y, Hong J. Molecular recognition of carbohydrates through directional hydrogen bonds by urea-appended porphyrins in organic media[J].Angewandte Chemie International Edition,2002,41(16):2947.
28 Lee J D, Jang D, Hong J I. Molecular recognition of amino sugars by a porphyrin-based receptor in aqueous media[J].Notes,2010,31(9):2685.
29 Lee J D, Kim Y H, Hong J I. Carbohydrate recognition through H-bonding and CH-pi interactions by porphyrin-based receptors[J].The Journal of Organic Chemistry,2010,75(22):7588.
30 Gilday L C, White N G, Beer P D. Halogen-and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition[J].Dalton Transactions,2013,42(44):15766.
31 Xie Z Y, Ou Y Q, Zhu Y Z, et al. Synthesis of a novel bisimidazo-lium branched Zinc metalloporphyrin and its recognition for halide anion[J].Chemical Journal of Chinese Universities,2009(7):1332(in Chinese).
谢朝阳,欧阳勤,朱义州,等.咪唑修饰的卟啉化合物的合成及其对卤素离子的选择性识别[J].高等学校化学学报,2009(7):1332.
32 Wienkers M, Ramos J, Jemal H, et al. Enhanced shape-selective recognition of anion guests through complexation-induced organization of porphyrin hosts[J].Organic Letters,2012,14(6):1370.
33 Dudic M, Lhoták P, Stibor I, et al. Calix[4]arene-porphyrin conjugates as versatile molecular receptors for anions[J].Organic Letters,2003,5(2):149.
34 Xie J, Chen X, Huang Z, et al. Computational simulation study on the anion recognition properties of functionalized tetraphenyl porphyrins[J].Journal of Molecular Modeling,2015,21(6):140.
35 Aoyama Y, Asakawa M, Matsui Y, et al. Molecular recognition. 16. Molecular recognition of quinones: Two-point hydrogen-bonding strategy for the construction of face-to-face porphyrin-quinone architectures[J].Journal of the American Chemical Society,1991,113(16):6233.
36 Hayashi T, Miyahara T, Koide N, et al. Molecular recognition of ubiquinone analogues. Specific interaction between quinone and functional porphyrin via multiple hydrogen bonds[J].Journal of the American Chemical Society,1997,119(31):7281.
37 D’Souza F, Deviprasad G R. Studies on porphyrin-quinhydrone complexes: Molecular recognition of quinone and hydroquinone in solution[J].The Journal of Organic Chemistry,2001,66(13):4601.
38 Tanaka K, Yamamoto Y, Machida I, et al. Quinone recognition by amide hydrogen bonding in porphyrin systems[J].Journal of Chemical Society Perkin Transacitons,1999,11(2):285.
39 Mang Z Y, Zhao X, Liu C P, et al. Chiral recognitions of organic small molecules by Cobalt(Ⅲ)-porphyrin[J].Acta Chimica Sinica,2008,66(2):195(in Chinese).
莽朝永,赵霞,刘彩萍,等.钴卟啉对有机小分子的手性识别[J].化学学报,2008,66(2):195.
40 Noworyta K, Kutner W, Wijesinghe C A, et al. Nicotine, cotinine, and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors[J].Analytical Chemistry,2012,84(5):2154.
41 Lipstman S, Goldberg I. Supramolecular crystal chemistry with porphyrin tinkertoys. Hydrogen-bonding and coordination networks with the “Chair” and “Table” conformers of tetra(3-carboxyphenyl)porphyrin[J].Crystal Growth & Design,2013,13(2):942.
42 Zhang Y, Lei Y C, Pan J H, et al. Molecular recognitions of purines by hematoporphyrin and metalloporphyrin receptors[J].Spectroscopy and Spectral Analysis,2004,24(10):1241(in Chinese).
张勇,雷亚春,潘景浩,等.血卟啉及金属血卟啉对嘌呤衍生物识别作用的研究[J].光谱学与光谱分析,2004,24(10):1241.
43 Yanagisawa S, Crowley P B, Firbank S J, et al. π-interaction tuning of the active site properties of metalloproteins[J].Journal of the American Chemical Society,2008,130(46):15420.
44 Takai A, Chkounda M, Eggenspiller A, et al. Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via π-π interactions in nonpolar media[J].Journal of the American Chemical Society,2010,132(12):4477.
45 Angiolini L, Benelli T, Giorgini L. Polymethacrylic zinc porphyrin: A new approach to chiral recognition[J].Reactive and Functional Polymers,2011,71(2):204.
46 Dimitrijevic B P, Borozan S Z, Stojanovic S D. pi-pi and cation-pi interactions in protein-porphyrin complex crystal structures[J].Royal Society of Chemistry Advances,2012,2(33):12963.
47 Tong S L, Zhang J, Yan Y, et al. Self-assembled supramolecular architecture with alternating porphyrin and phthalocyanine, bonded by hydrogen bonding and pi-pi stacking[J].Solid State Sciences,2011,13(11):1967.
48 Geng J, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films[J].The Journal of Physical Chemistry C,2010,114(18):8227.
49 Bera R, Jana B, Mondal B, et al. Design of CdTeSe-porphyrin-graphene composite for photoinduced electron transfer and photocurrent generation[J].ACS Sustainable Chemistry & Engineering,2017,5(4):3002.
50 Mcdonald N A, Subramani C, Caldwell S T, et al. Simultaneous hydrogen bonding and π-stacking interactions between flavin/porphyrin host-guest systems[J].Tetrahedron Letters,2011,52(17):2107.
51 Li Y, Ruan W J, Wang C Z, et al. The study of molecular recognition of zinc porphyrins with intramolecular π-π interaction[J].Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition),1999,32(3):123(in Chinese).
李瑛,阮文娟,王传忠,等.具有分子内π-π作用的锌卟啉的分子识别研究[J].南开大学学报(自然科学版),1999,32(3):123.
52 Wang S J, Zang N, Ruan W J, et al. Molecular recognition of chiral zinc porphyrin with amino acid ester derivatives[J].Acta Physico-Chimica Sinica,2008,24(3):507(in Chinese).
王树军,臧娜,阮文娟,等.手性锌卟啉与氨基酸酯的分子识别性能[J].物理化学学报,2008,24(3):507.
53 Murakami R, Minami A, Mizutani T. Molecular recognition in anisotropic media. Binding of alkylpyridines to amphiphilic zinc porphyrins incorporated in liposomal bilayer membranes[J].Organic & Biomolecular Chemistry,2009,7(7):1437.
54 Lipstman S, Goldberg I. Supramolecular crystal chemistry of tetra(3-pyridyl)porphyrin. 2. Two- and three-dimensional coordination networks with cobalt and cadmium ions[J].Crystal Growth & Design,2010,10(11):5001.
55 El-Hachemi Z, Mancini G, Ribó J M, et al. Role of the hydrophobic effect in the transfer of chirality from molecules to complex systems: From chiral surfactants to porphyrin/surfactant aggregates[J].Journal of the American Chemical Society,2008,130(45):15176.
56 Zeng L, He Y, Dai Z, et al. Chiral induction, memory, and amplification in porphyrin homoaggregates based on electrostatic interactions[J].Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2009,10(6):954.
57 Mizutani T, Wada K, Kitagawa S. Molecular recognition of amines and amino esters by zinc porphyrin receptors: Binding mechanisms and solvent effects[J].The Journal of Organic Chemistry,2000,65(19):6097.
58 Rebouças J S, James B R. Molecular recognition using ruthenium(Ⅱ) porphyrin thiol complexes as probes[J].Inorganic Chemistry,2013,52(2):1084.
59 Villari V, Mineo P, Scamporrino E, et al. Amino acids recognition by water-soluble uncharged porphyrin tweezers: Spectroscopic evidences in high optical density solutions[J].Chemical Physics,2012,402:118.
60 Kokhan O, Ponomarenko N, Pokkuluri P R, et al. Multimerization of solution-state proteins by tetrakis(4-sulfonatophenyl)porphyrin[J].Biochemistry,2014,53(31):5070.
61 Iwamoto H, Mizutani T, Kano K. Thermodynamics of hydrophobic interactions: Entropic recognition of a hydrophobic moiety by poly (ethylene oxide)-zinc porphyrin conjugates[J].Chemistry-An Asian Journal,2007,2(10):1267.
62 Eguchi M, Shimada T, Tryk D A, et al. Role of hydrophobic inte-raction in controlling the orientation of dicationic porphyrins on solid surfaces[J].The Journal of Physical Chemistry C,2013,117(18):9245.
63 Deda D K, Pavani C, Carita E, et al. Correlation of photodynamic activity and singlet oxygen quantum yields in two series of hydrophobic monocationic porphyrins[J].Journal of Porphyrins and Phthalocyanines,2012,16(1):55.
64 Corbellini F, Di Costanzo L, Crego-Calama M, et al. Guest encapsulation in a water-soluble molecular capsule based on ionic interactions[J].Journal of the American Chemical Society,2003,125(33):9946.
65 Corbellini F, Knegtel R, Grootenhuis P, et al. Water-soluble mole-cular capsules: Self-assembly and binding properties[J].Chemistry -A European Journal,2005,11(1):298.
66 Oshovsky G V, Reinhoudt D N, Verboom W. The underestimated role of counter ions in electrostatic self-assembly:[1+1] cavitand-calix[4]arene capsules based on azinium-sulfonate interactions[J].European Journal of Organic Chemistry,2006,12:2810.
67 Garg B, Bisht T, Chauhan S. Electrostatic interaction between ca-tionic calix[4]pyrroles and anionic porphyrins in water[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2010,67(1-2):241.
68 D′ Urso A, Di Mauro A, Cunsolo A, et al. Solvophobic versus electrostatic interactions drive spontaneous adsorption of porphyrins onto inorganic surfaces: A full noncovalent approach[J].The Journal of Physical Chemistry C,2013,117(34):17659.
[1] 廖明义, 宋雅婷. 阴离子合成POSS端基官能化聚丁二烯与白炭黑相互作用[J]. 材料导报, 2019, 33(2): 352-356.
[2] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[3] 史婷婷, 姬东方, 于艳敏. 卟啉聚集行为的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 46-52.
[4] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed