Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15031-15046    https://doi.org/10.11896/cldb.20040012
  无机非金属及其复合材料 |
高效钙钛矿太阳电池及其叠层电池研究进展
刘璋1,2, 陈新亮1,2, 侯国付1,2, 李跃龙1,2, 丁毅1,2, 赵颖1,2, 张晓丹1,2
1 南开大学光电子薄膜器件与技术研究所,天津 300071
2 天津市光电子薄膜器件与技术重点实验室,天津 300071
Research Progress of High-efficiency Perovskite Solar Cells andTheir Tandem Cells
LIU Zhang1,2, CHEN Xinliang1,2, HOU Guofu1,2, LI Yuelong1,2, DING Yi1,2, ZHAO Ying1,2, ZHANG Xiaodan1,2
1 Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
2 Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China
下载:  全 文 ( PDF ) ( 8137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳电池及其叠层电池发展迅速,成为当前光伏领域的研究热点。有机无机卤化钙钛矿材料具有吸收系数高、带隙可调、制备工艺简单等优点,其单结太阳电池实验室效率从2009年的3.8%迅速提升到25.2%,两端钙钛矿/硅叠层太阳电池效率达到29.15%。
钙钛矿太阳电池种类丰富,依据器件结构主要分为介孔型钙钛矿太阳电池和平面型(nip结构和pin结构)钙钛矿太阳电池。大量研究工作通过钝化工程、添加剂工程、能级匹配工程、组分工程等先进技术获得高质量的钙钛矿吸收层和光电性能好、低成本、无污染的电荷传输层,提升电荷提取效率,使得每种器件结构均能实现22%以上的超高效率。但常规钙钛矿材料光、湿、热稳定性差,部分研究通过改善吸收层的成分,研发出准二维钙钛矿太阳电池与全无机钙钛矿太阳电池,更加贴合实际应用。考虑到不同的应用场景,钙钛矿太阳电池又进一步分化出柔性钙钛矿太阳电池与半透明钙钛矿太阳电池,透明导电电极的研发成为该领域的重要突破方向。基于钙钛矿的叠层电池中,高效钙钛矿/硅叠层电池是研究重点,通过优化陷光策略和添加剂工程等方法降低光学损失与电学损失,能够在材料成本增长不大的情况下显著提升电池效率,极具市场竞争力。
本文主要阐述了钙钛矿太阳电池及其叠层电池的发展历史、器件种类和结构、功能层材料特性、性能优化策略,并对其面临的挑战以及发展趋势进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘璋
陈新亮
侯国付
李跃龙
丁毅
赵颖
张晓丹
关键词:  钙钛矿太阳电池  钙钛矿/硅叠层  器件结构  功能层  光电转换效率    
Abstract: Perovskite solar cells and perovskite-based tandem cells have become an international research focus in the field of photovoltaics. Organic and inorganic halide perovskite materials exhibit some advantages, like high absorption coefficient, adjustable band gap, and simple preparation process. The power conversion efficiency (PCE) of single junction perovskite solar cells have developed rapidly from 3.8% in 2009 to 25.2% at present and the PCE of monolithic perovskite/silicon tandem solar cell have reached 29.15%.
There are two device architectures currently dominating in the field of perovskite solar cells: mesoporous type and planar heterojunction. Nume-rous research efforts have been performed,including a high-quality perovskite absorber layer and charge transport layers with good photoelectric performance to improve the efficiency of charge extraction, through advanced technologies such as passivation engineering, additive engineering, energy level matching engineering, component engineering, etc. The device efficiency with high quality functional layers can reach over 22%. However, conventional perovskite materials have poor stability problem under the light, humidity and thermal condition. Quasi-two-dimensional and all-inorganic perovskite solar cells are also developed by changing the composition of the absorption layer, which is more suitable for practical applications. Considering different application scenarios, perovskite solar cells can be designed as flexible and semi-transparent devices and transparent conductive electrodes are the key part in them. Among perovskite-based tandem solar cells, tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. By optimizing light trapping strategies and additive engineering and other methods to reduce optical and electrical losses, one can significantly improve the efficiency of perovkkite/Si tandem solar cells without significant increase in material costs.
In this paper,the history of device development, device types and structures, characteristics of functional layer material, performance optimization strategy of perovskite solar cells and typical perovskite/Si tandem cells are introduced in detail. Also, the challenges of perovskite solar cells and perovskite-based tandem cells, as well as development trends, are summarized and prospected.
Key words:  perovskite solar cells    perovskite/silicon tandem    device structure    functional layer    photoelectric conversion efficiency
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TM914.4+2  
基金资助: 国家重点研发计划项目(2018YFB1500103);科技研究项目(S1F1007011)
作者简介:  刘璋,2018年7月毕业于西安理工大学,获得工学学士学位,现为南开大学光电子薄膜器件与技术研究所硕士研究生,在陈新亮副教授的指导下进行研究。 目前主要研究领域为钙钛矿及叠层太阳电池及低温高性能透明导电薄膜材料设计及应用。
陈新亮,博士/副教授,硕士研究生导师,美国密歇根大学(University of Michigan)访问研究学者(Research Scholar);2007年6月获得南开大学微电子学与固体电子学博士学位。2007年至今工作于南开大学,主要从事光电子薄膜材料与器件领域(如晶体硅太阳电池(SHJ/TOPCon)、钙钛矿太阳电池,钙钛矿/晶硅叠层太阳电池,氧化物薄膜材料及器件,新型能源/光电子器件集成设计/计算等)的研究工作,主持和参加国家重点研发计划项目,国家自然科学基金项目&天津市自然科学基金重点和面上项目,以及企业研发合作项目等,发表文章30余篇,申请获得授权发明专利10余项。
引用本文:    
刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
LIU Zhang, CHEN Xinliang, HOU Guofu, LI Yuelong, DING Yi, ZHAO Ying, ZHANG Xiaodan. Research Progress of High-efficiency Perovskite Solar Cells andTheir Tandem Cells. Materials Reports, 2021, 35(15): 15031-15046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040012  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15031
1 Rong Y, Hu Y, Mei A, et al. Science,2018,361(6408),8235.
2 Fagiolari L, Bella F. Energy & Environmental Science,2019,12(12),3437.
3 Balilonda A, Li Q, Tebyetekerwa M,et al. Advanced Fiber Materials,2019,1(2),101.
4 Gao L, Yang G. Solar RRL,2019,4(2),1900200.
5 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society,2009,131,6050.
6 Im J H, Lee C R, Lee J W, et al. Nanoscale,2011,3(10),4088.
7 Kim H S, Lee C R, Im J H, et al. Scientific Reports,2012,2,591.
8 Burschka J, Pellet N, Moon S J, et al. Nature,2013,499(7458),316.
9 Leijtens T, Eperon G E, Pathak S, et al. Nature Communications,2013,4,2885.
10 NREL Best Research-Cell Efficiencies. https:∥www.nrel.gov/pv/cell-efficiency.html.
11 Cohen B N, Labarca C, Davidson N, et al. Journal of General Physiology,1992,100(3),373.
12 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics,2014,8(7),506.
13 Zhu Y, Du C, Wang S, et al. Chinese Journal of Engineering,2020,42(1),16(in Chinese).
朱彧,杜晨,王硕,等.工程科学学报,2020,42(1),16.
14 Li X G, Zhang X, Shi Z J, et al. Acta Physica Sinica,2019,68(15),158803(in Chinese).
李晓果,张欣,施则娇,等.物理学报,2019,68(15),158803.
15 Noh J H, Im S H, Heo J H, et al. Nano Letters,2013,13(4),1764.
16 Suarez B, Gonzalez-Pedro V, Ripolles T S, et al. Journal of Physical Chemistry Letters,2014,5(10),1628.
17 Yang Z, Rajagopal A, Jen A K. Advanced Materials,2017,29(47),1704418.
18 Hao F, Stoumpos C C, Chang R P, et al. Journal of the American Chemical Society,2014,136(22),8094.
19 Ogomi Y, Morita A, Tsukamoto S, et al. Journal of Physical Chemistry Letters,2014,5(6),1004.
20 Noel N K, Stranks S D, Abate A, et al. Energy & Environmental Science,2014,7(9),3061.
21 Borriello I, Cantele G, Ninno D. Physical Review B,2008,77(23),235214.
22 Pang S, Hu H, Zhang J,et al. Chemistry of Materials,2014,26(3),1485.
23 Jeon N J, Noh J H, Yang W S, et al. Nature,2015,517(7535),476.
24 Saliba M, Matsui T, Domanski K, et al. Science,2016,354(6309),206.
25 Wehrenfennig C, Eperon G E, Johnston M B, et al. Advanced Materals,2014,26(10),1584.
26 Xing G C, Mathews N, Sun S Y, et al. Science,2013,342(6156),344.
27 Stranks S D, Eperon G E, Grancini G, et al. Science,2013,342(6156),341.
28 Tanaka K, Takahashi T, Ban T, et al. Solid State Communications,2003,127(9-10),619.
29 Wang P, Wu Y, Cai B, et al. Advanced Functional Materials,2019,29(47),1807661.
30 Park N G, Zhu K. Nature Reviews Materials,2020,5,333.
31 Jiang Q, Zhao Y, Zhang X, et al. Nature Photonics,2019,13(7),460.
32 Gao F, Zhao Y, Zhang X, et al. Advanced Energy Materials,2019,10(13),1902650.
33 LuoD, Su R, Zhang W, et al. Nature Reviews Materials,2019,5(1),44.
34 Chen J, Park N G. Advanced Materials,2019,31(47),1803019.
35 Roldan-Carmona C, Gratia P, Zimmermann I, et al. Energy & Environmental Science,2015,8(12),3550.
36 Son D Y, Lee J W, Choi Y J, et al. Nature Energy,2016,67(4),571.
37 Akin S, Arora N, Zakeeruddin S M, et al. Advanced Energy Materials,2019,10(13),1903090.
38 Gao F, Zhao Y, Zhang X, et al. Advanced Energy Materials,2019,10(13),1902650.
39 Cho K T, Paek S, Grancini G, et al. Energy & Environmental Science,2017,10(2),621.
40 Yoo J J, Wieghold S, Sponseller M C, et al. Energy & Environmental Science,2019,12(7),2192.
41 Rong Y, Liu L, Mei A, et al. Advanced Energy Materials,2015,5,1501066.
42 Arora N, Dar M I, Hinderhofer A, et al. Science,2017,358(6364),768.
43 Singh R, Singh P K, Bhattacharya B, et al. Applied Materials Today,2019,14,175.
44 Qin P, Tanaka S, Ito S, et al. Nature Communication,2014,5,3834.
45 Yang I S, Lee S, Choi J, et al. Journal of Materials Chemistry A,2019,7(11),6028.
46 Jeon N J, Na H, Jung E H, et al. Nature Energy,2018,3(8),682.
47 Jung E H, Jeon N J, Park E Y, et al. Nature,2019,567(7749),511.
48 Yang W S, Park B W, Jung E H, et al. Science,2017,356(6345),1376.
49 Liu Y H, Akin S, Pan L F, et al. Science Advances,2019,5(6),eaaw2543.
50 Kim M, Kim G H, Lee T K, et al. Joule,2019,3(9),2179.
51 Min H, Kim M, Lee S U, et al. Science,2019,366(6466),749.
52 Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. Nature,2018,555(7697),497.
53 Chen R, Cao J, Duan Y, et al. Journal of American Chemical Society,2019,141(1),541.
54 Jeon N J, Noh J H, Kim Y C, et al. Nature Materals,2014,13(9),897.
55 Leijtens T, Eperon G E, Pathak S, et al. Nature Communication,2013,4,2885.
56 Lee M M, Teuscher J, Miyasaka T, et al. Science,2012,338(61074),643.
57 Ball J M, Lee M M, Hey A, et al. Energy & Environmental Science,2013,6(6),1739.
58 Kim J, Ho-Baillie A, Huang S. Solar RRL,2019,3(4),1800302.
59 Donald A Neaman. Semiconductor physics and devices basic principles, Electronic Industry Press, US,2017.
60 Aydin E, Bastiani M D, Wolf S D. Advanced Materals,2019,31,1900428.
61 Zhu P, Gu S, Luo X, et al. Advanced Energy Materials,2019,10(3),1903083.
62 Chen Y, Meng Q, Zhang L, et al. Journal of Energy Chemistry,2019,35,144.
63 Tavakoli M M, Saliba M, Yadav P, et al. Advanced Energy Materials,2019,9(1),1802646.
64 Wang P, Li R, Chen B, et al. Advanced Materials,2020,6(32),1905766.
65 Turren-Cruz S H, Hagfeldt A, Saliba M. Science,2018,362(6413),449.
66 Turren-Cruz S H, Saliba M, Mayer M T, et al. Energy & Environmental Science,2018,11(1),78.
67 Tan H R, Jain A, Voznyy O, et al. Science,2017,355(6326),722.
68 Tavakoli M M, Yadav P, Tavakoli R, et al. Advanced Energy Materials,2018,8(23),1800794.
69 Tavakoli M M, Yadav P, Prochowicz D, et al. Advanced Energy Mate-rials,2019,9(17),1803587.
70 Wang Y B, Wu T H, Barbaud J L, et al. Science,2019,365(6454),687.
71 Wang L G, Zhou H P, Hu J N, et al. Science,2019,363(6424),265.
72 Bu T, Li J, Zheng F, et al. Nature Communication,2018,9(1),4609.
73 Yang Z, Dou J, Kou S, et al. Advanced Functional Materials,2020,30,1910710.
74 Snaith H J, Abate A, Ball J M, et al. Journal of Physical Chemistry Letters,2014,5(9),1511.
75 Chen B, Yang M, Priya S, et al. Journal of Physical Chemistry Letters,2016,7(5),905.
76 Liu P, Wang W, Liu S, et al. Advanced Energy Materials,2019,9(13),1803017.
77 Kang D H, Park N G. Advanced Materials,2019,31(34),1805214.
78 Reenen S V, Kemerink M, Snaith H J. Journal of Physical Chemistry Letters,2015,6(19),3808.
79 Kim H S, Jang I H, Ahn N, et al. Journal of Physical Chemistry Letters,2015,6(22),4633.
80 Etgar L, Gao P, Xue Z, et al. Journal of the American Chemical Society,2012,134(42),17396.
81 Jeng J Y, Chiang Y F, Lee M H, et al. Advanced Materials,2013,25(27),3727.
82 Luo D Y, Yang W Q, Wang Z P, et al. Science,2018,360(6396),1442.
83 Zheng X, Hou Y, Bao C, et al. Nature Energy,2020,5(2),131.
84 Zheng X, Chen B, Dai J, et al. Nature Energy,2017,2(7),17102.
85 Zheng X, Deng Y, Chen B, et al. Advanced Materials,2018,30(52),1803428.
86 Deng Y, Zheng X, Bai Y, et al. Nature Energy,2018,3(7),560.
87 Xiao X, Bao C, Fang Y, et al. Advanced Materials,2018,30(9),1705176.
88 Yang S, Dai J, Yu Z H, et al. Journal of the American Chemical Society.2019,141,5781.
89 Said A A, Xie J, Zhang Q. Small,2019,15(27),1900854.
90 Chen W, Wu Y, Fan J, et al. Advanced Energy Materials,2018,8(19),1703519.
91 Kim K H, Takahashi C, Abe Y, et al. Optik,2014,125(12),2899.
92 Kim J H, Liang P W, Williams S T, et al. Advanced Materials,2015,27(4),695.
93 Chen W, Zhou Y, Chen G, et al. Advanced Energy Materials,2019,9(19),1803872.
94 Bai Y, Xiao S, Hu C, et al. Advanced Energy Materials,2017,7(20),1701038.
95 Chen H, Wei Q, Saidaminov M I, et al. Advanced Materials,2019,31(46),1903559.
96 Yang D, Zhang X, Wang K, et al. Nano Letters,2019,19(5),3313.
97 Shen H, Duong T, Peng J, et al. Energy & Environmental Science,2018,11(2),394.
98 Luo D, Zhao L, Wu J, et al. Advanced Materials,2017,29(19),1604758.
99 Chen Z, Turedi B, Alsalloum A Y, et al. ACS Energy Letters,2019,4(6),1258.
100 Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. ChemSusChem,2019,12(8),1560.
101 Ma S, Cai M, Cheng T, et al. Science China Materials,2018,61(10),1257.
102 Smith I C, Hoke E T, Solis-Ibarra D, et al. Angewandte Chemie International Edition,2014,53(42),11232.
103 Tsai H, Nie W, Blancon J C, et al. Nature,2016,536(7616),312.
104 Yang R, Li R, Cao Y, et al. Advanced Materials,2018,30(51),1804771.
105 Liu G, Zheng H, Xu X, et al. Advanced Functional Materials,2019,29(47),1807565.
106 Zhou T, Lai H, Liu T, et al. Advanced Materials,2019,31(32),1901242.
107 Yang J, Liu X, Zhang Y, et al. Nano Energy,2018,54,218.
108 Ouedraogo N A N, Chen Y, Xiao Y Y, et al. Nano Energy,2020,67,104249.
109 Sutton R J, Eperon G E, Miranda L, et al. Advanced Energy Materials,2016,6(8),1502458.
110 Xiang W, Tress W. Advanced Materials,2019,31(44),1902851.
111 Tai Q, Tang K C, Yan F. Energy & Environmental Science,2019,12(8),2375.
112 Ma T, Wang S, Zhang Y, et al. Journal of Materials Science,2019,55(2),464.
113 Duan J, Zhao Y, Yang X, et al. Advanced Energy Materials,2018,8(31),1802346.
114 Liu C, Li W, Zhang C, et al. Journal of American Chemical Society,2018,140(11),3825.
115 Wang P, Zhang X, Zhou Y, et al. Nature Communication,2018,9(1),2225.
116 Wang Y, Dar M I, Ono L K, et al. Science,2019,365(6453),591.
117 Jung H S, Han G S, Park N G, et al. Joule,2019,3(8),1850.
118 Zeng P, Deng W, Liu M. Solar RRL,2020,4(3),1900485.
119 Kumar M H, Yantara N, Dharani S, et al. Chemical Communication,2013,49(94),11089.
120 Docampo P, Ball J M, Darwich M, et al. Nature Communication,2013,4,2761.
121 Xie H, Yin X, Guo Y, et al. Physica Status Solidi (RRL)-Rapid Research Letters,2019,13(5),1800566.
122 Han G S, Lee S, Duff M L, et al. ACS Applied Materials & Interfaces,2018,10(5),4697.
123 Bi C, Chen B, Wei H, et al. Advanced Materials,2017,29(30),1605900.
124 Wang C, Zhao D, Grice C R, et al. Journal of Materials Chemistry A,2016,4(31),12080.
125 Wang C, Guan L, Zhao D, et al. ACS Energy Letters,2017,2(9),2118.
126 Huang K, Peng Y, Gao Y, et al. Advanced Energy Materials,2019,9(44),1901419.
127 Feng J, Zhu X, Yang Z, et al. Advanced Materials,2018,30(35),801418.
128 Wu C, Wang D, Zhang Y, et al. Advanced Functional Materials,2019,29(34),1902974.
129 Fu F, Feurer T, Jager T, et al. Nature Communication,2015,6,8932.
130 Zhao Y, Nardes A M, Zhu K. Applied Physics Letters,2014,104(21),213906.
131 Loper P, Moon S J, Nicolas S M, et al. Physical Chemistry Chemical Physics,2015,17(3),1619.
132 Bush K A, Palmstrom A F, Yu Z J, et al. Nature Energy,2017,2(4),17009.
133 Tong J H, Song Z N, Kim D H, et al. Science,2019,364(6439),475.
134 Zhao J, Brinkmann K O, Hu T, et al. Advanced Energy Materials,2017,7(14),1602599.
135 Chen D, Pang S, Zhou L, et al. Journal of Materials Chemistry A,2019,7(25),15156.
136 Wang Z, Zhu X, Zuo S, et al. Advanced Functional Materials,2019,30(4),1908298.
137 Xu J X, Boyd C C, Yu Z J, et al. Science,2020,367(6482),1097.
138 Chen B, Baek S W, Hou Y, et al. Nature Communication,2020,11(1),1257.
139 Zhang Y, Wu Z, Li P, et al. Advanced Energy Materials,2018,8(1),1701569.
140 You P, Liu Z, Tai Q, et al. Advanced Materials,2015,27(24),3632.
141 Guo F, Azimi H, Hou Y, et al. Nanoscale,2015,7(5),1642.
142 Xie M, Lu H, Zhang L, et al. Solar RRL,2018,2(2),1700184.
143 Li Z, Kulkarni S A, Boix P P, et al. ACS Nano,2014,8(7),6797.
144 Shi B, Duan L, Zhao Y, et al. Advanced Materials,2020,32(3),1806474.
145 Lin J, Lai M, Dou L, et al. Nature Materials,2018,17(3),261.
146 Richter A, Hermle M, Glunz S W, et al. IEEE Journal of Photovoltaics,2013,3(4),1184.
147 Yan L L, Han C, Shi B, et al. Materials Today Nano,2019,7,100045.
148 Chen B, Yu Z, Liu K, et al. Joule,2019,3(1),177.
149 Yu Z, Leilaeioun M, Holman Z. Nature Energy,2016,1(11),16137.
150 Wang Z, Song Z, Yan Y, et al. Advanced Science,2019,6(7),1801704.
151 Leijtens T, Bush K A, Prasanna R, et al. Nature Energy,2018,3(10),828.
152 Hu Y, Song L, Chen Y, et al. Solar RRL,2019,3(7),1900080.
153 Mailoa J P, Bailie C D, Johlin E C, et al. Applied Physics Letters,2015,106(12),121105.
154 Albrecht S, Saliba M, Correa Baena J P, et al. Energy & Environmental Science,2016,9(1),81.
155 Sahli F, Werner J, Kamino B A, et al. Nature Materials,2018,17(9),820.
156 Bush K A, Manzoor S, Frohna K, et al. ACS Energy Letters,2018,3(9),2173.
157 Sahli F, Kamino B A, Werner J, et al. Advanced Energy Materials,2018,8(6),1701609.
158 Tomasi A, Paviet-Salomon B, Jeangros Q, et al. Nature Energy,2017,2(5),17062.
159 Mazzarella L, Lin Y H, Kirner S, et al. Advanced Energy Materials,2019,9(14),1803241.
160 Werner J, Weng C H, Walter A, et al. Journal of Physical Chemical Letter,2016,7(1),161
161 Schneider B W, Lal N N, Baker-Finch S, et al. Optics Express,2014,22(6),1426.
162 Jošt M, Köhnen E, Morales-Vilches A B, et al. Energy & Environmental Science,2018,11(12),3511.
163 Chen B, Yu Z J, Manzoor S, et al. Joule,2020,4,1.
164 Choi H, Choi K, Choi Y, et al. Small Methods,2019,4(5),1900569.
165 Mahapatra A, Prochowicz D, Tavakoli M M, et al. Journal of Materials Chemistry A,2020,8(1),27.
166 Futscher M H, Ehrler B. ACS Energy Letters,2017,2(9),2089.
167 Lin R, Xiao K, Qin Z, et al. Nature Energy,2019,4(10),864.
168 Palmstrom A F, Eperon G E, Leijtens T, et al. Joule,2019,3(9),2193.
169 Han Q F, Hsieh Y T, Meng L, et al. Science,2018,361(6405),904.
170 Kim D H, Muzzillo C P, Tong J, et al. Joule,2019,3(7),1734.
[1] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[2] 刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
[3] 杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
[4] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[5] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[6] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[7] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[8] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[9] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[10] 戎小莹, 金慧娇, 张天, 郭丹, 赵昆越, 田汉民. 钙钛矿太阳电池的理论性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 33-40.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed