Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2542-2554    https://doi.org/10.11896/j.issn.1005-023X.2018.15.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
空穴传输材料在高效钙钛矿太阳能电池中的发展演变
邹金龙1, 罗玉峰1,2, 肖宗湖3,4, 胡云3, 饶森林3, 刘绍欢3
1 南昌大学机电工程学院,南昌 330031;
2 华东交通大学机电与车辆工程学院,南昌 330031;
3 新余学院新能源科学与工程学院,新余 338004;
4 新余新能源研究所,新余 338004
The Evolvement of Hole-transporting Materials in Highly Efficient Perovskite Solar Cells
ZOU Jinlong1, LUO Yufeng1,2, XIAO Zonghu3,4, HU Yu3, RAO Senlin3, LIU Shaohuan3
1 School of Mechanical and Electronic Engineering, Nanchang University, Nanchang 330031;
2 School of Mechatronics& Vehicle Engineering, East China Jiaotong University, Nanchang 330031;
3 School of New Energy Science and Engineering, Xinyu College, Xinyu 338004;
4 New Energy Research Institute of Xinyu, Xinyu 338004
下载:  全 文 ( PDF ) ( 1695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳能电池(PSCs)转换效率已从2009年的3.8%上升到2017年的22.7%,其快速的发展可能使光伏工业进入革命新阶段。空穴传输材料(HTM)是构成高效钙钛矿太阳能电池的重要组成部分,开发和设计导电性好、成本低、稳定性好的空穴传输层材料对钙钛矿太阳能电池的研究显得非常重要。本文将近几年应用于钙钛矿太阳能电池中较高效的空穴传输材料归纳为有机小分子类、有机聚合物类和无机材料类,同时也介绍了无空穴传输层的钙钛矿电池。详细评述了基于各类空穴传输材料的钙钛矿太阳能电池的光电性能及稳定性,重点讨论了HOMO能级、空穴迁移率、添加剂的掺杂等因素对钙钛矿太阳能电池的影响。最后指出了空穴传输材料未来的研究重点和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹金龙
罗玉峰
肖宗湖
胡云
饶森林
刘绍欢
关键词:  钙钛矿太阳能电池  空穴传输材料  光电转换效率(PCE)  无空穴传输层钙钛矿太阳能电池    
Abstract: The perovskite solar cells (PSCs) have acquired a pronounced power conversion efficiency (PCE) improvement from 3.8% in 2009 to 22.7% in 2017, which may lead to a revolutionary new age for photovoltaic industry. Hole-transporting mate-rial (HTM) is a crucial part of highly efficient PSC, and the development and design of highly conductive, low-cost and highly-stable hole-transporting materials are of remarkable significance for the PSC R&D. This paper provides an elaborate delineation of the HTM that have emerged in recent years and applied to relatively high-efficiency PSCs, by classifying HTM into small molecule organic compounds, organic polymers and inorganic compounds, and also offers an introduction on the research evolution of hole-conductor-free PSCs, with emphases on the photovoltaic performances and stability of PSCs based on various HMT or without HMT. Finally, the future research trends are presented.
Key words:  perovskite solar cell    hole-transporting material    power conversion efficiency (PCE)    hole-conductor-free perovskite solar cell
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(51462035);江西省高等学校科技落地计划项目(KJLD13099);江西省技术创新引导类科技计划专利产业化专项(20161BBM26039)
通讯作者:  肖宗湖:通信作者,男,1983年生,博士,副教授,研究方向为新型薄膜太阳电池关键材料与器件 E-mail:xiaozonghu@126.com   
作者简介:  邹金龙:男,1990年生,硕士,主要从事新型薄膜太阳电池关键材料与器件研究
引用本文:    
邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
ZOU Jinlong, LUO Yufeng, XIAO Zonghu, HU Yu, RAO Senlin, LIU Shaohuan. The Evolvement of Hole-transporting Materials in Highly Efficient Perovskite Solar Cells. Materials Reports, 2018, 32(15): 2542-2554.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.003  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2542
1 Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J].Journal of the American Chemical Society,2017,139(21):7148.
2 Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J].Nature,2013,499(7458):316.
3 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050.
4 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011,3(10):4088.
5 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2(8):591.
6 Best Research-Cell Efficiencies of NREL[DB/OL].https:∥www.nrel.gov/pv/assets/images/efficiency-chart.png.
7 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybridsolar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643.
8 Ball J M, Lee M M, Hey A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J].Energy & Environmental Science,2013,6(6):1739.
9 Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science,2013,342(6156):344.
10 Liu Mingzhen, Johnston M B, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature,2013,501(7467):395.
11 Jeon N J, Lee H G, Kim Y C, et al. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J].Journal of the American Chemical Society,2014,136(22):7837.
12 Park N G. Perovskite solar cells: An emerging photovoltaic techno-logy[J].Materials Today,2015,18(2):65.
13 Zhou H, Chen Q, Li G, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196):542.
14 Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234.
15 Yang W S, Park B W, Jung E H, et al. Iodide management in forma-midinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376.
16 Lin Q, Armin A, Nagiri R C R, et al. Electro-optics of perovskite solar cells[J].Nature Photonics,2014,9(2):106.
17 Christians J A, Fung R C, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J].Journal of the American Chemical Society,2014,136(2):758.
18 Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J].Nature Communications,2014,5:3834.
19 Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J].Advanced Materials,2014,26(24):4107.
20 Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J].Advanced Materials,2015,27(4):695.
21 Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J].Advanced Functional Materials,2014,24(1):151.
22 Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency[J].Energy & Environmental Science,2016,9(6):1989.
23 Wang Y K,Yuan Z C, Shi G Z, et al. Dopant-free spiro-triphenyla-mine fluorene as hole-transporting material for perovskite solar cells withenhanced efficiency and stability[J].Advanced Functional Materials,2016,26:1375.
24 Mun J W, Cho I, Lee D, et al. Acetylene-bridged D-A-D type small molecule comprising pyrene and diketopyrrolopyrrole for high efficiency organic solar cells[J].Organic Electronics,2013,14(9):2341.
25 Bi D, Xu B, Gao P, et al. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%[J].Nano Energy,2016,23:138.
26 Xu B, Bi D, Hua Y, et al. A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for efficient solid-state dye-sensitized solar cells and perovskite solar cells[J].Energy & Environmental Science,2016,9(3):873.
27 Choi H, Paek S, Lim N, et al. Efficient perovskite solar cells with 13.63% efficiency based on planar triphenylamine hole conductors[J].Chemistry (Weinheim an der Bergstrasse, Germany),2014,20(35):10894.
28 Choi H, Park S, Paek S, et al. Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell[J].Journal of Materials Chemistry A,2014,2(45):19136.
29 Li H, Fu K, Hagfeldt A, et al. A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells[J].Angewandte Chemie,2014,53(16):4085.
30 Li H, Fu K, Boix P P, et al. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells[J].ChemSusChem,2014,7(12):3420.
31 Molinaontoria A, Zimmermann I, Garciabenito I, et al. Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells[J].Angewandte Chemie International Edition,2016,55(21):6270.
32 Huang C, Fu W F, Li C Z, et al. Dopant-free hole-transporting material with a c3h symmetrical truxene core for highly efficient perovskite solar cells[J].Journal of the American Chemical Society,2016,138(8):2528.
33 Rakstys K, Abate A, Dar M I, et al. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells[J].Journal of the American Chemical Society,2015,137(51):16172.
34 Saliba M, Orlandi S, Matsui T, et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells[J].Nature Energy,2016,1(2):15017.
35 Do K, Choi H, Lim K, et al. Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells[J].Chemical Communications,2014,50(75):10971.
36 Nishimura H, Ishida N, Shimazaki A, et al. Hole-transporting materials with a two-dimensionally expanded π-system around an azulene core for efficient perovskite solar cells[J].Journal of the American Chemical Society,2015,137(50):15656.
37 Reddy S S, Gunasekar K, Heo J H, et al. Solar cells: Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J].Advanced Materials,2016,28(4):685.
38 Malinauskas T, Saliba M, Matsui T, et al. Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells[J].Energy & Environmental Science,2016,9(5):1681.
39 Sun L, Hua Y, Xu B, et al. High conductivity Ag-based metal-organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factor[J].Chemical Science,2016,7(4):2633.
40 Zhang J, Xu B, Johansson M B, et al. Constructive effects of alkyl chains: A strategy to design simple and non-spiro hole transporting materials for high-efficiency mixed-ion perovskite solar cells[J].Advanced Energy Materials,2016,6(13);2536.
41 Zhao X, Zhang F, Yi C, et al. A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(42):16330.
42 Liu Y, Hong Z, Chen Q, et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J].Advanced Materials,2016,28(3):440.
43 Liu Y, Chen Q, Duan H S, et al. Dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(22):11940.
44 Xiao Z, Bi C, Shao Y, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J].Energy & Environmental Science,2014,7(8):2619.
45 Nie W, Tsai H, Asadpour R, et al. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J].Science,2015,347(6221):522.
46 Heo J H, Han H J, Kim D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J].Energy & Environmental Science,2015,8(5):1602.
47 Liu C, Su Z, Li W, et al. Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT∶PSS hole-transporter[J].Organic Electronics,2016,33(33):221.
48 Huang X, Wang K, Yi C, et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT∶PSS hole transport layer[J].Advanced Energy Materials,2016,6(3):1773.
49 Huang X, Guo H, Yang J, et al. Moderately reduced graphene oxide/PEDOT∶PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells[J].Organic Electronics,2016,39:288.
50 Zhang S P, Yu Z M, Li P C, et al. Poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate films withlow conductivity and low acidity through a treatment of theirsolutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells[J].Organic Electronics,2016,32:149.
51 Hu L, Sun K, Wang M, et al. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT∶PSS[J].ACS Applied Materials & Interfaces,2017,9(50):43902.
52 Casaluci S, Carlo A D, Bonaccorso F, et al. Perovskite solar cells stabilized by carbon nanostructure-P3HT blends[C]∥IEEE, International Conference on Nanotechnology. Italy,2016:41.
53 Chen P Y, Yang S H. Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection[J].2016,6(11):3651.
54 Xiao J, Shi J, Liu H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J].Advanced Energy Materials,2015, 5(8):1943.
55 Zhang Y, Elawad M, Yu Z, et al. Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping[J].RSC Advances,2016,6(110):108888.
56 Hou Y, Du X, Scheiner S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells[J].Science,2017,358(6367):1192.
57 Ryu S. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J].Energy & Environmental Science,2014,7(8):2614.
58 Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517(7535):476.
59 Jo J W,Seo M S,Park M,et al. Improving prformance and stability of flexible planar heterojunction perovskite solar cells using polyme-ric hole-transport material[J].Advanced Functional Materials,2016,26:4464.
60 Wang Z, Dong Q, Xia Y, et al. Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells[J].Organic Electronics,2016,33:142.
61 Liu C, Yang S, Zhang H L,et al. p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells[J].Journal of Inorganic Materials,2016,31(4):358(in Chinese).
刘畅,苑帅,张海良,等.铜膜碘化法制备p型CuI薄膜及其用作空穴传输层的反型钙钛矿电池性能[J].无机材料学报,2016,31(4):358.
62 Chappaz-Gillot C, Berson S, Salazar R, et al. Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer[J].Solar Energy Materials & Solar Cells,2014,120(1):163.
63 Irwin M D, Buchholz D B, Hains A W, et al. p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J].Proceedings of the National Academy of Sciences,2008,105(8):2783.
64 Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20[J].Science,2017,358(6364):768.
65 Yang I S, Mi R S, Sang D S, et al. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability[J].Nano Energy,2017,32:414.
66 Zhu Z, Bai Y, Zhang T, et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar pero-vskite solar cells[J].Angewandte Chemie International Edition,2014,53(46):12571.
67 Wang K C, Jeng J Y, Shen P S, et al. p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells[J].Scientific Reports,2014,4(4):4756.
68 Yin X, Chen P, Que M, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts[J].ACS Nano,2016,10(3):3630.
69 Jung J W, Chueh C C, Jen A K. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J].Advanced Materials,2015,27(47):7874.
70 Yu Z K, Fu W F, Liu W Q, et al. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction pero-vskite solar cells[J].Chinese Chemical Letters,2017,1:13
71 Koo B, Jung H, Park M, et al. Hole transport: Pyrite-based Bi-functional layer for long-term stability and high-performance of organo-lead halide perovskite solar cells[J].Advanced Functional Mate-rials,2016,26(30):5382.
72 Lei H, Yang G, Zheng X, et al. Incorporation of high-mobility and room-temperature-deposited cuxs as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells[J].Solar Rrl,2017,1(6):170038.
73 Murray, Christopher B, Norris, D J, et al. Synthesis and characteri-zation of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites[J].Journal of the American Chemical Society,1993,115(4):8706.
74 Hossain M A,Jennings J R,Shen Chao, et al. Cd Se-sensitized mesoscopic TiO2 solar cells exhibiting>5% efficiency:Redundancy of Cd-S buf-fer layer[J].Journal of Materials Chemistry,2012,22(32):16235.
75 Dabbousi B O,Rodriguez V J,Mikulec F V,et al.(Cd Se)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites[J].Journal of Physical Chemistry B,1997,101(46):9463.76 Li L, Pandey A, Werder D J, et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission[J].Journal of the American Chemical Society,2011,133(5):1176.
77 Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J].Journal of the American Chemical So-ciety,2012,134(42):17396.
78 Xiao Y, Han G, Chang Y, et al. Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells[J].Journal of Power Sources,2015,286:118.
79 Li X, Tschumi M, Han H, et al. outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics[J].Energy Technology,2015,3(6):551.
80 Ku Z, Rong Y, Xu M, et al. Full printable processed mesoscopic CH3NH3PBI3/TiO2 heterojunction solar cells with carbon counter electrode[J].Scientific Reports,2013,3(11):3132.
81 Rong Y, Ku Z, Mei A, et al. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J].Journal of Physical Chemistry Letters,2014,5(12):2160.
82 Chen H, Wei Z, He H, et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%[J].Advanced Energy Materials,2016,6(8):2087.
[1] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[2] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[3] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[4] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed