Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4027-4040    https://doi.org/10.11896/j.issn.1005-023X.2018.23.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展
彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠
南昌大学材料科学与工程学院,南昌 330031
Application of Inorganic Charge Transportation Layers in Organic-Inorganic Hybrid Perovskite Solar Cells: a Review
PENG Jiayi, XIA Xuefeng, JIANG Yihua, ZOU Minhua, WANG Xiaofeng, LI Fan
Department of Materials Science and Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 2556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于有机-无机杂化钙钛矿材料为光活性层构建的太阳能电池由于具有直接带隙、吸光系数高、激子束缚能低、激子和载流子扩散距离长,以及成本低、制备工艺简单、光电转换率高、易于实现大面积柔性器件等优点,而成为当今新型光伏技术中一颗耀眼的新星。在钙钛矿太阳能电池中,电荷传输层在提高光电转换效率、稳定性及寿命等方面扮演着非常重要的角色,其中无机电荷传输层因具有载流子迁移率高、稳定性好、制备工艺简单等优势越来越受到人们的关注。本文总结了无机电荷传输层在钙钛矿太阳能电池中的应用,详细介绍了各种无机电子/空穴传输层在钙钛矿太阳能电池中的研究进展,并对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭家奕
夏雪峰
江奕华
邹敏华
王晓峰
李璠
关键词:  有机-无机杂化钙钛矿太阳能电池  电荷传输层  无机材料    
Abstract: In recent years, solar cells (PSCs) based on organic-inorganic hybrid perovskite photoactive materials have exhibited peculiar enchantment in the emerging photovoltaic technologies, owing to their direct band gap, favorable light absorption coefficient, low excition binding energy, long diffusion length of the excitons and the carriers, as well as low cost, simple preparation process, satisfactory photoelectric conversion efficiency, possibility for realizing large-scale flexible devices, and so forth. In PSCs, the charge transportation layer plays a crucial role in enhancing the photoelectric conversion efficiency, stability and longevity. Thanks to the high carrier mobility, good stability and simple preparation process, inorganic charge transportation layers have aroused enormous interests from researchers. Numerous researches on applying inorganic charge transportation layers in the PSCs have been conducted. Herein, the recent progresses in the application of diverse inorganic charge transportation layers in PSCs are summarized and the development trend is proposed.
Key words:  organic-inorganic hybrid perovskite solar cells    charge transportation layer    inorganic materials
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TM914  
基金资助: 国家自然科学基金(61464006; 61664006); 江西省青年重点项目(2017ACB21010)
作者简介:  彭家奕:男,1995年生,硕士研究生,主要从事钙钛矿太阳能电池的研究;李璠:女,1975年生,教授,博士研究生导师,主要从事有机-无机杂化光电功能材料与器件方面的研究 E-mail:lfan@ncu.edu.cn
引用本文:    
彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
PENG Jiayi, XIA Xuefeng, JIANG Yihua, ZOU Minhua, WANG Xiaofeng, LI Fan. Application of Inorganic Charge Transportation Layers in Organic-Inorganic Hybrid Perovskite Solar Cells: a Review. Materials Reports, 2018, 32(23): 4027-4040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.001  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4027
1 Baikie T, Fang Y, Kadro J M,et al.Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].Journal of Materials Chemistry A,2013,1(18):5628.
2 Sun S, Salim T, Mathews N,et al.The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J].Energy & Environmental Science,2014,7(1):399.
3 Ogomi Y, Morita A, Tsukamoto S,et al.CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm[J].The Journal of Physical Chemistry Letters,2014,5(6):1004.
4 Stranks S D, Eperon G E, Grancini G,et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J].Science,2013,342(6156):341.
5 D’Innocenzo V, Grancini G, Alcocer M J P,et al. Excitons versus free charges in organo-lead tri-halide perovskites[J].Nature Communications,2014,5:586.
6 Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S,et al. General working principles of CH3NH3PbX3 perovskite solar cells[J].Nano Letters,2014,14(2):888.
7 Sum T C, Mathews N.Advancements in perovskite solar cells: Photophysics behind the photovoltaics[J].Energy & Environmental Science,2014,7(8):2518.
8 Green M A, Ho-Baillie A, Snaith H J.The emergence of perovskite solar cells[J].Nature Photonics,2014,8:506.
9 Jung H S, Park N G.Perovskite solar cells: From materials to devices[J].Small,2015,11(1):10.
10 Kojima A, Teshima K, Shirai Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050.
11 Im J H, Lee C R, Lee J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011,3(10):4088.
12 Lee M M, Teuscher J, Miyasaka T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643.
13 Ma Y, Wang S, Zheng L,et al.Recent research developments of perovskite solar cells[J].Chinese Journal of Chemistry,2014,32(10):957.
14 Burschka J, Pellet N, Moon S J,et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J].Nature,2013,499(7458):316.
15 Liu M, Johnston M B, Snaith H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature,2013,501:395.
16 Zhou H, Chen Q, Li G,et al.Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196):542.
17 Jeon N J, Noh J H, Yang W S,et al.Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517:476.
18 Yang W S, Noh J H, Jeon N J,et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234.
19 Yang W S, Park B W, Jung E H,et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376.
20 National renewable energy laboratory (NREL). https:∥www.nrel.gov/pv/assets/images/efficiency-chart.png,(accessed:November:2017).
21 Zhao Y, Nardes A M, Zhu K.Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: Charge transport, recombination, and diffusion length[J].The Journal of Physical Chemistry Letters,2014,5(3):490.
22 Brenner T M, Egger D A, Kronik L, et al.Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties[J].Nature Reviews Materials,2016,1:15007.
23 Leijtens T, Lauber B, Eperon G E, et al.The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells[J].Journal of Physical Chemistry Letters,2014,5(7):1096.
24 Green M A.Corrigendum to solar cell efficiency tables (version 46)[J].Progress in Photovoltaics: Research and Applications,2015,23(9):1202.
25 Hu Q, Wu J, Jiang C,et al.Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%[J].ACS Nano,2014,8(10):10161.
26 Liu D, Yang J, Kelly T L.Compact layer free perovskite solar cells with 13.5% efficiency[J].Journal of the American Chemical Society,2014,136(49):17116.
27 Etgar L, Gao P, Xue Z,et al.Mesoscopic CH3NH3PbI3/TiO2 he-terojunction solar cells[J].Journal of the American Chemical Society,2012,134(42):17396.
28 Laban W A, Etgar L.Depleted hole conductor-free lead halide iodide heterojunction solar cells[J].Energy & Environmental Science,2013,6(11):3249.
29 Shi J, Dong J, Lv S,et al.Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property[J].Applied Physics Letters,2014,104(6):063901.
30 Mei A, Li X, Liu L,et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J].Science,2014,345(6194):295.
31 Xue Q, Hu Z, Liu J,et al.Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer[J].Journal of Materials Chemistry A,2014,2(46):19598.
32 Jeng J Y, Chiang Y F, Lee M H,et al.CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells advanced materials[J].Advanced Materials,2013,25(27):3727.
33 Liang P W, Liao C Y, Chueh C C,et al.Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J].Advanced Materials,2014,26(22):3748.
34 Xiao Z, Dong Q, Bi C,et al.Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J].Advanced Materials,2014,26(37):6503.
35 Xiao Z, Bi C, Shao Y,et al.Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J].Energy & Environmental Science,2014,7(8):2619.
36 Wang Q, Shao Y, Dong Q,et al.Large fill-factor bilayer iodine pe-rovskite solar cells fabricated by a low-temperature solution-process[J].Energy & Environmental Science,2014,7(7):2359.
37 Chang S, Han G D, Weis J G,et al.Transition metal-oxide free perovskite solar cells enabled by a new organic charge transport layer[J].ACS Applied Materials & Interfaces,2016,8(13):8511.
38 Marinova N, Tress W, Humphry-Baker R,et al.Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation[J].ACS Nano,2015,9(4):4200.
39 Chueh C C, Li C Z, Jen A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells[J].Energy & Environmental Science,2015,8(4):1160.
40 Heo J H, Im S H, Noh J H,et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J].Nature Photonics,2013,7:486.
41 Bi C, Wang Q, Shao Y,et al.Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J].Nature Communications,2015,6:7747.
42 Noh J H, Im S H, Heo J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Letters,2013,13(4):1764.
43 Guo Y, Shoyama K, Sato W, et al.Polymer stabilization of lead(ii) perovskite cubic nanocrystals for semitransparent solar cells[J].Advanced Energy Materials,2016,6(6):1502317.
44 Xia Y, Sun K, Chang J, et al.Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(31):15897.
45 Sun K, Chang J, Isikgor F H, et al.Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection[J].Nanoscale,2015,7(3):896.
46 Hu L, Sun K, Wang M,et al.Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT∶PSS[J].ACS Applied Materials & Interfaces,2017,9(50):43902.
47 Abrusci A, Stranks S D, Docampo P,et al.High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers[J].Nano Letters,2013,13(7):3124.
48 Zhu Q, Bao X, Yu J,et al.Compact layer free perovskite solar cells with a high-mobility hole-transporting layer[J].ACS Applied Mate-rials & Interfaces,2016,8(4):2652.
49 Chen H, Pan X, Liu W,et al.Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material[J].Chemical Communications,2013,49(66):7277.
50 Xiao Y, Han G, Chang Y,et al.An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material[J].Journal of Power Sources,2014,267:1.
51 Manders J R, Tsang S W, Hartel M J,et al.Solution-processed nic-kel oxide hole transport layers in high efficiency polymer photovol-taic cells[J].Advanced Functional Materials,2013,23(23):2993.
52 Park N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J].The Journal of Physical Chemistry Letters,2013,4(15):2423.
53 Chen W, Wu Y, Yue Y,et al.Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J].Science,2015,350(6263):944.
54 You J, Meng L, Song T B,et al.Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].Nature Nanotechnology,2015,11:75.
55 Heo J H, Song D H, Han H J,et al.Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J].Advanced Materials,2015,27(22):3424.
56 Yang D, Yang Z, Qin W,et al.Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition[J].Journal of Materials Chemistry A,2015,3(18):9401.
57 Heo J H, Han H J, Kim D, et al.Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J].Energy & Environmental Science,2015,8(5):1602.
58 Lee M, Jo Y, Kim D S, et al.Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate[J].Journal of Materials Chemistry A,2015,3(28):14592.
59 Im J H, Jang I H, Pellet N, et al.Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J].Nature Nanotechnology,2014,9:927.
60 Bi D, El-Zohry A M, Hagfeldt A, et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J].ACS Photonics,2015,2(5):589.
61 Wozny S, Yang M, Nardes A M,et al.Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells[J].Chemistry of Materials,2015,27(13):4814.
62 Ahn N, Son D Y, Jang I H,et al.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(ii) iodide[J].Journal of the American Chemical Society,2015,137(27):8696.
63 Cojocaru L, Uchida S, Sanehira Y,et al.Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells[J].Chemistry Letters,2015,44(5):674.
64 Yang J, Siempelkamp B D, Mosconi E, et al.Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO[J].Chemistry of Materials,2015,27(12):4229.
65 Kumar M H, Yantara N, Dharani S,et al.Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J].Chemical communications,2013,49(94):11089.
66 Liu D, Kelly T L.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J].Nature Photonics,2013,8:133.
67 Dong J, Zhao Y, Shi J,et al.Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification[J].Chemical Communications,2014,50(87):13381.
68 Kim J, Kim G, Kim T K,et al.Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer[J].Journal of Materials Chemistry A,2014,2(41):17291.
69 Nakamura I, Negishi N, Kutsuna S,et al.Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for no removal[J].Journal of Molecular Catalysis A: Chemical,2000,161(1-2):205.
70 Wang J T W, Ball J M, Barea E M,et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J].Nano Letters,2014,14(2):724.
71 Wojciechowski K, Saliba M, Leijtens T, et al.Sub-150 ℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J].Energy & Environmental Science,2014,7(3):1142.
72 Yella A, Heiniger L P, Gao P, et al.Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency[J].Nano Letters,2014,14(5):2591.
73 Docampo P, Ball J M, Darwich M, et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J].Nature Communications,2013,4:2761.
74 Leijtens T, Eperon G E, Pathak S,et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured orga-nometal tri-halide perovskite solar cells[J].Nature Communications,2013,4:2885.
75 Apgar B A, Martin L W.Understanding the competition between epitaxial strain and thermodynamics in TiO2: Structural, morphological, and property evolution[J].Crystal Growth & Design,2014,14(4):1981.
76 Lee Y H, Luo J, Son M K,et al.Enhanced charge collection with passivation layers in perovskite solar cells[J].Advanced Materials,2016,28(20):3966.
77 Giordano F, Abate A, Correa Baena J P,et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J].Nature Communications,2016,7:10379.
78 Agresti A, Pescetelli S, Cinà L,et al.Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J].Advanced Functio-nal Materials,2016,26(16):2686.
79 Tan H, Jain A, Voznyy O,et al.Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J].Science,2017,355(6326):722.
80 Yu J C, Kim D B, Baek G,et al.High-performance planar perovskite optoelectronic devices: A morphological and interfacial control by polar solvent treatment[J].Advanced Materials,2015,27(23):3492.
81 Wu W Q, Huang F, Chen D, et al.Solvent-mediated dimension tuning of semiconducting oxide nanostructures as efficient charge extraction thin films for perovskite solar cells with efficiency exceeding 16%[J].Advanced Energy Materials,2016,6(7):1502027.
82 Yu Y, Li J, Geng D,et al.Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures[J].ACS Nano,2015,9(1):564.
83 Seo J Y, Uchida R, Kim H S,et al.Boosting the efficiency of perovskite solar cells with CsBr-modified mesoporous TiO2 beads as electron-selective contact[J].Advanced Functional Materials,2018,28(15):1705763.
84 Singh T, Öz S, Sasinska A,et al.Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers[J].Advanced Functional Materials,2018,28(14):1706287.
85 Wu C G, Chiang C H, Tseng Z L,et al.High efficiency stable inverted perovskite solar cells without current hysteresis[J].Energy & Environmental Science,2015,8(9):2725.
86 Zuo L, Gu Z, Ye T,et al.Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J].Journal of the American Chemical Society,2015,137(7):2674.
87 Hu Q, Liu Y, Li Y,et al.Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer[J].Journal of Materials Chemistry A,2015,3(36):18483.
88 Liu Q, Zhen J, Zhou W,et al.Efficiency enhancement of polymer solar cells by applying an alcohol-soluble fullerene aminoethanol derivative as a cathode buffer layer[J].Organic Electronics,2016,39:191.
89 Liu X, Li X, Li Y,et al.High-performance polymer solar cells with PCE of 10.42% via Al-doped ZnO cathode interlayer[J].Advanced Materials,2016,28(34):7405.
90 Liu Q, Mantilla-Perez P, Montes Bajo M, et al.UV-induced oxygen removal for photostable, high-efficiency PTB7-TH∶PC71BM photovoltaic cells[J].ACS Applied Materials & Interfaces,2016,8(42):28750.
91 Han G S, Shim H W, Lee S, et al.Low-temperature modification of ZnO nanoparticles film for electron-transport layers in perovskite solar cells[J].ChemSusChem,2017,10(11):2425.
92 Tiwana P, Docampo P, Johnston M B, et al.Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells[J].ACS Nano,2011,5(6):5158.
93 Snaith H J, Ducati C.SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency[J].Nano Letters,2010,10(4):1259.
94 Ke W, Fang G, Liu Q,et al.Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J].Journal of the American Chemical Society,2015,137(21):6730.
95 Ke W, Zhao D, Cimaroli A J,et al.Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(47):24163.
96 Zhu Z, Bai Y, Liu X,et al.Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J].Advanced Mate-rials,2016,28(30):6478.
97 Correa Baena J P, Steier L, Tress W,et al. Highly efficient planar perovskite solar cells through band alignment engineering[J].Energy & Environmental Science,2015,8(10):2928.
98 Anaraki E H, Kermanpur A, Steier L,et al.Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J].Energy & Environmental Science,2016,9(10):3128.
99 Mali S S, Patil J V, Kim H J, et al.Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells[J].Nanoscale,2018,DOI:10.1039/c8nr00695d.
100 Jiang Q, Chu Z, Wang P,et al.Planar-structure perovskite solar cells with efficiency beyond 21%[J].Advanced Materials,2017,29(46):1703852.
101 Dagar J, Castro-Hermosa S, Lucarelli G, et al.Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers[J].Nano Energy,2018,doi.org/10.1016/j.nanoen.2018.04.027.
102 Bi D, Moon S J, Häggman L,et al.Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J].RSC Advances,2013,3(41):18762.
103 Song J, Zheng E, Bian J,et al.Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(20):10837.
104 Rao H S, Chen B X, Li W G,et al.Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells[J].Advanced Functional Materials,2015,25(46):7200.
105 Wang K, Shi Y, Dong Q,et al.Low-temperature and solution-processed amorphous WOx as electron-selective layer for perovskite solar cells[J].Journal of Physical Chemistry Letters,2015,6(5):755.
106 Chang C Y, Huang W K, Wu J L,et al.Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells[J].Che-mistry of Materials,2015,28(1):242.
107 Xu X, Zhang H, Shi J,et al.Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer[J].Journal of Materials Chemistry A,2015,3(38):19288.
108 Yun J, Ryu J, Lee J, et al.SiO2/TiO2 based hollow nanostructures as scaffold layers and Al-doping in the electron transfer layer for efficient perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(4):1306.
109 Wang K, Shi Y, Li B,et al.Amorphous inorganic electron-selective layers for efficient perovskite solar cells: Feasible strategy towards room-temperature fabrication[J].Advanced Materials,2016,28(9):1891.
110 Park C, Kim U, Ju C J,et al.High mobility field effect transistor based on BaSnO3 with Al2O3 gate oxide[J].Applied Physics Letters,2014,105(20):203503.
111 Zhu L, Shao Z, Ye J,et al.Mesoporous BaSnO3 layer based perovskite solar cells[J].Chemical Communications,2016,52(5):970.
112 Bera A, Wu K, Sheikh A,et al.Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells[J].The Journal of Physical Chemistry C,2014,118(49):28494.
113 Li L, Gibson E A, Qin P,et al.Double-layered NiO photocathodes for p-type DSSCS with record ipce advanced materials[J].Advanced materials,2010,22(15):1759.
114 Odobel F, Le Pleux L, Pellegrin Y,et al.New photovoltaic devices based on the sensitization of p-type semiconductors: Challenges and opportunities[J].Accounts of Chemical Research,2010,43(8):1063.
115 Irwin M D, Buchholz D B, Hains A W, et al.P-type semiconduc-ting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J].Proceedings of the National Academy of Sciences,2008,105(8):2783.
116 Shim J W, Fuentes-Hernandez C, Dindar A,et al.Polymer solar cells with NiO hole-collecting interlayers processed by atomic layer deposition[J].Organic Electronics,2013,14(11):2802.
117 Christians J A, Fung R C, Kamat P V.An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J].Journal of the American Chemical So-ciety,2014,136(2):758.
118 Sepalage G A, Meyer S, Pascoe A,et al.Copper(Ⅰ) iodide as hole-conductor in planar perovskite solar cells: Probing the origin of J-V hysteresis[J].Advanced Functional Materials,2015,25(35):5650.
119 Chatterjee S, Pal A J.Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures[J].The Journal of Physical Chemistry C,2016,120(3):1428.
120 Zuo C, Ding L.Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells[J].Small,2015,11(41):5528.
121 Jeng J Y, Chen K, Chiang T Y,et al.Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells advanced materials[J].Advanced Materials,2014,26(24):4107.
122 Tian H, Xu B, Chen H, et al.Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells[J].ChemSusChem,2014,7(8):2150.
123 Zhu Z, Bai Y, Zhang T,et al.High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar pe-rovskite solar cells[J].Angewandte Chemie,2014,53(46):12571.
124 Yin X, Que M, Xing Y, et al.High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer[J].Journal of Materials Chemistry A,2015,3(48):24495.
125 Ito S, Tanaka S, Vahlman H,et al.Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au structural control and photoaging effects[J].ChemPhysChem,2014,15(6):1194.
126 Subbiah A S, Halder A, Ghosh S,et al.Inorganic hole conducting layers for perovskite-based solar cells[J].Journal of Physical Che-mistry Letters,2014,5(10):1748.
127 Chavhan S, Miguel O, Grande H J,et al.Organo-metal halide pe-rovskite-based solar cells with CuSCN as the inorganic hole selective contact[J].Journal of Materials Chemistry A,2014,2(32):12754.
128 Ito S, Tanaka S, Nishino H.Lead-halide perovskite solar cells by CH3NH3I dripping on PbI2-CH3NH3I-DMSO precursor layer for planar and porous structures using cuscn hole-transporting material[J].Journal of Physical Chemistry Letters,2015,6(5):881.
129 O’Regan B C, Lenzmann F. Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: Transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells[J].The Journal of Physical Chemistry B,2004,108(14):4342.
130 Inudo S, Miyake M, Hirato T.Electrical properties of CuI films prepared by spin coating[J].Physica Status Solidi (a),2013,210(11):2395.
131 Huangfu M, Shen Y, Zhu G,et al.Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer[J].Applied Surface Science,2015,357:2234.
132 Gharibzadeh S, Nejand B A, Moshaii A,et al.Two-step physical deposition of a compact CuI hole-transport layer and the formation of an interfacial species in perovskite solar cells[J].ChemSusChem,2016,9(15):1929.
133 Nazari P, Ansari F, Abdollahi Nejand B,et al.Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells[J].The Journal of Physical Chemistry C,2017,121(40):21935.
134 Malerba C, Biccari F, Leonor Azanza Ricardo C,et al. Absorption coefficient of bulk and thin film Cu2O[J].Solar Energy Materials and Solar Cells,2011,95(10):2848.
135 Ito T, Yamaguchi H, Okabe K,et al.Single-crystal growth and characterization of Cu2O and CuO[J].Journal of Materials Science,1998,33(14):3555.
136 Hossain M I, Alharbi F H, Tabet N.Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J].Solar Energy,2015,120:370.
137 Nejand B A, Ahmadi V, Gharibzadeh S,et al.Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J].ChemSusChem,2016,9(3):302.
138 Meyer J, Hamwi S, Kröger M,et al.Transition metal oxides for organic electronics: Energetics, device physics and applications[J].Advanced Materials,2012,24(40):5408.
139 Gao P, Grätzel M, Nazeeruddin M K.Organohalide lead perovskites for photovoltaic applications[J].Energy & Environmental Science,2014,7(8):2448.
140 Kazim S, Nazeeruddin M K, Gratzel M,et al.Perovskite as light harvester: A game changer in photovoltaics[J].Angewandte Chemie,2014,53(11):2812.
141 Zhao Y, Nardes A M, Zhu K.Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells[J].Applied Physics Letters,2014,104(21):213906.
142 Yu W, Li F, Wang H,et al.Ultrathin Cu2O as an efficient inorga-nic hole transporting material for perovskite solar cells[J].Nanoscale,2016,8(11):6173.
143 Hu L, Peng J, Wang W,et al.Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells[J].ACS Photonics,2014,1(7):547.
144 Bai Y, Yu H, Zhu Z,et al.High performance inverted structure perovskite solar cells based on a PCBM:Polystyrene blend electron transport layer[J].Journal of Materials Chemistry A,2015,3(17):9098.145 Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J].Advanced Materials,2015,27(4):695.
145 Park J H, Seo J, Park S,et al.Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J].Advanced Materials,2015,27(27):4013.
146 Wang K C, Shen P S, Li M H,et al.Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells[J].ACS Applied Materials & Interfaces,2014,6(15):11851.
147 Yao K, Li F, He Q,et al.A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells[J].Nano Energy,2017,40:155.
148 He J, Xiang Y, Zhang F, et al.Improvement of red light harvesting ability and open circuit voltage of Cu∶NiOx based p-i-n planar perovskite solar cells boosted by cysteine enhanced interface contact[J].Nano Energy,2018,45:471.
149 Qin P, Tanaka S, Ito S,et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J].Nature Communications,2014,5:3834.
150 Jung M, Kim Y C, Jeon N J,et al.Thermal stability of CuSCN hole conductor-based perovskite solar cells[J].ChemSusChem,2016,9(18):2592.
151 Arora N, Dar M I, Hinderhofer A,et al.Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%[J].Science,2017,358:768.
152 Sun H, Hou X, Wei Q,et al.Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells[J].Chemical Communications,2016,52(52):8099.
153 154 Lei H, Yang G, Zheng X,et al. Incorporation of high-mobility and room-temperature-deposited CuxS as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells[J].Solar RRL,2017,1(6):1700038.
154 Koo B, Jung H, Park M,et al.Pyrite-based bi-functional layer for long-term stability and high-performance of organo-lead halide perovskite solar cells[J].Advanced Functional Materials,2016,26(30):5400.
155 Zhang H, Wang H, Chen W,et al.CuGaO2:A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J].Advanced Materials,2017,29(8):1604984.
[1] 方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
[2] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[3] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[4] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[5] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[6] 沈韬, 柴鲜花, 孙淑红, 朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
[7] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[8] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[9] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[10] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[11] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[12] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[13] 邹宇新, 邱佳佳, 席风硕, 杨玺, 李绍元, 马文会. 纳米金属银、铜辅助化学刻蚀制绒金刚线切割多晶硅的研究[J]. 材料导报, 2018, 32(21): 3706-3711.
[14] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[15] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed