Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 110-116    https://doi.org/10.11896/cldb.201901012
  材料与可持续发展(一)——面向洁净能源的先进材料 |
高效单晶硅太阳电池的最新进展及发展趋势
陈俊帆1,2, 赵生盛1,2, 高天1,2, 徐玉增1,2, 张力1,2, 丁毅1,2, 张晓丹1,2, 赵颖1,2, 侯国付1,2
1 南开大学光电子薄膜器件与技术研究所,天津 300071
2 天津市光电子薄膜器件与技术重点实验室,天津 300071
High-efficiency Monocrystalline Silicon Solar Cells: Development Trends and Prospects
CHEN Junfan1,2, ZHAO Shengsheng1,2, GAO Tian1,2, XU Yuzeng1,2, ZHANG Li1,2, DING Yi1,2, ZHANG Xiaodan1,2, ZHAO Ying1,2, HOU Guofu1,2
1 Institute of Optoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071
2 Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071
下载:  全 文 ( PDF ) ( 1858KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 晶体硅太阳电池是目前光伏市场的主流产品,其又可分为多晶硅电池和单晶硅(c-Si)电池。目前,多晶硅电池成本较低,市场份额较大,但其效率较低;单晶硅电池成本相对偏高,但其效率更高,市场份额小于多晶硅电池。随着硅材料和硅片切割技术的进步,单晶硅片的成本持续下降,且未来市场对高效率的高端光伏产品需求日益增长。因此,高效率的单晶硅电池将受到更多的关注。
   为进一步提高单晶硅太阳电池的效率,近几年的研究工作主要集中于提高硅片质量来降低体缺陷,寻找新型钝化材料来降低表面和界面缺陷,开发先进的减反技术(新型的绒面陷光结构和材料)以提高光的利用率,引入低电阻金属化技术降低串联电阻,优化PN结制备技术以及器件结构等。2014年至今,单晶硅太阳电池的转换效率得到连续突破。目前,最高效率是日本Kaneka公司创造的26.6%,其他效率达到或者超过25%的晶硅电池包括钝化发射极背面局部场接触(PERL)电池、交叉指式背接触(IBC)电池、硅异质结(SHJ)电池、交叉指式背接触异质结(HBC)电池、隧穿氧化层钝化接触(TOPCon)电池、多晶硅氧化物选择钝化接触(POLO)电池等。分析这些典型电池的关键技术可以发现,栅线电极与c-Si的金属-半导体接触复合成为影响电池效率的关键因素。为减小这些复合,一方面通过电池背面局部开孔来减小金属与c-Si直接接触的面积,包括钝化发射极背场点接触(PERC)、PERL、钝化发射极和背面全扩散(PERT)等电池。另一方面则是开发既能够实现优异的表面钝化,同时又无需开孔便可分离与输运载流子的新型载流子选择性钝化接触技术,如SHJ电池、TOPCon电池等。此外,采用交叉指式背接触技术与其他电池结构结合则是最大限度提高光利用率的必然选择,包括IBC电池和HBC电池。
   本文介绍了当前国际上转化效率达到或超过25%的典型高效单晶硅太阳电池,分别对其器件结构、核心工艺、关键材料等进行了分析,在总结这些高效单晶硅太阳电池各自特点的基础上对该领域的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊帆
赵生盛
高天
徐玉增
张力
丁毅
张晓丹
赵颖
侯国付
关键词:  单晶硅太阳电池  减反技术  新型钝化材料  载流子选择性钝化接触  交叉指式背接触    
Abstract: Undoubtedly, crystalline silicon solar modules represented by polycrystalline silicon (poly-Si) and monocrystalline silicon (c-Si) play a dominant role in the current photovoltaic market. At present, poly-Si solar modules with low production cost occupy a large market share, but they show relatively low conversion efficiencies. On the contrary, c-Si solar modules with relatively high production cost occupy a smaller market share compared to poly-Si modules, but they behave higher conversion efficiencies. With the progress of silicon material and c-Si wafer cutting technology, the cost of c-Si solar modules is continuously decreasing. There is a booming demand for high-efficient photovoltaic products in the future market. Accordingly, high efficiency c-Si solar cells and modules will be expected to receive more and more attention.
Aiming at further enhancing the device performance of c-Si solar cells, numerous research efforts have been performed, which mainly focus on improving the quality of Si wafers to reduce bulk defects, seeking novel passivation materials to reduce surface and interface defects, developing advanced anti-reflection technology (novel light trapping structures and materials) to raise incident light utilization, introducing low-resistant contact technology to cut down series resistance, optimizing PN junction fabrication and device designs et al. Since 2014, successive breakthroughs of conversion efficiency of c-Si silicon solar cells have been achieved with a current record of 26.6% reported by Kaneka Corp., Japan. c-Si solar cells with efficiency 25% or above include Passivated Emitter and Rear Locally diffused (PERL) cells, Interdigitated Back Contact (IBC) cells, Silicon Heterojunction (SHJ) cells, Interdigitated Back Contact and Silicon Heterojunction (HBC) cells, Tunneling Oxide layer Passivation Contact (TOPCon) cells and polysilicon on oxide (POLO) cells, etc. By analyzing the key technologies of these typical c-Si solar cells, it can be concluded that the contact recombination of metal grid electrodes and c-Si at the surface becomes the key influencing factors for the device efficiency. For the sake of weaken such recombination, one approach is to reduce the direct contact area between metal and semiconductor, such as Passivated Emitter and Rear Cell(PERC), PERL and Passivated Emitter and Rear Totally-diffused(PERT)solar cells. Another approach is to develop novel carrier-selective passivation contact, such as SHJ and TOPCon cells, which can achieve excellent surface passivation, separate and transport carriers without opening holes. In addition, the combination of interdigitated back contact and other device structures has become an inevitable choice to maximize light utilization, including IBC and HBC cells.
In this paper, the typical high-efficiency c-Si solar cells with conversion efficiencies of 25% or above are firstly summarized. The corresponding device structure, key technology and materials are analyzed in detail, respectively. At last, the development trends and future prospects of high-efficiency c-Si solar cells are performed.
Key words:  monocrystalline solar cells    anti-reflection technology    novel passivation materials    carrier-selective passivation contact    interdigitated back-contact
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TM914.4+1  
基金资助: 国家自然科学基金(61474066;61504069);天津市自然科学基金(15JCYBJC21200);高等学校学科创新引智计划(B16027);光学信息技术科学教育部重点实验室开放基金(2017KFKT015);中央高校基本科研业务费专项资金
作者简介:  陈俊帆,2015年6月毕业于山东理工大学,获得理学学士学位。侯国付,南开大学光电子薄膜器件与技术研究所教授、博士生导师,gfhou@nankai.edu.cn。
引用本文:    
陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
CHEN Junfan, ZHAO Shengsheng, GAO Tian, XU Yuzeng, ZHANG Li, DING Yi, ZHANG Xiaodan, ZHAO Ying, HOU Guofu. High-efficiency Monocrystalline Silicon Solar Cells: Development Trends and Prospects. Materials Reports, 2019, 33(1): 110-116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901012  或          http://www.mater-rep.com/CN/Y2019/V33/I1/110
1 Shen W Z. Physics and devices of silicon heterojunction solar cells, Science Press, China,2014(in Chinese). 沈文忠.硅基异质结太阳电池物理与器件,科学出版社,2014.2 Wang W J, Li H L, Zhou C L.Technology for manufacturing crystalline silicon solar cells, Machine Industry Press,2014(in Chinese).王文静,李海玲,周春兰.晶体硅太阳电池制造技术,机械工业出版社,2014.3 Chapin D M, Fuller C S, Pearson G L. Journal of Applied Physics,1954,25(5),676.4 Zhao J, Wang A, Green M A. Progress in Photovoltaics Research & Applications,1999,7(6),471.5 Green M A. Progress in Photovoltaics Research & Applications,2009,17(3),183.6 Masuko K, Shigematsu M, Hashiguchi T, et al. IEEE Journal of Photovoltaics,2014,4(6),1433.7 Smith D D, Cousins P, Westerberg S, et al. IEEE Journal of Photovol-taics,2014,4(6),1465.8 Liu J, Yao Y, Xiao S, et al. Journal of Physics D: Applied Physics,2018,51(12),123001. 9 Adachi D, Hernández J L, Yamamoto K. Applied Physics Letters,2015,107(23),73.10 Glunz S W, Feldmann F, Richter A, et al. In: Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition. Hamburg,2015,pp.259.11 Richter A, Benick J, Feldmann F, et al. Solar Energy Materials and Solar Cells,2017,173,96.12 Haase F, Schäfer S, Klamt C, et al. IEEE Journal of Photovoltaics,2018,8(1),23.13 Haase F, Hollemann C, Schäfer S, et al. Solar Energy Materials and Solar Cells,2018,186,184.14 Yoshikawa K, Kawasaki H, Yoshida W, et al. Nature Energy,2017,2,17032.15 Yoshikawa K, Yoshida W, Irie T, et al. Solar Energy Materials and Solar Cells,2017,173,37. 16 Shockley W, Queisser H J. Journal of Applied Physics,1961,32(3),510.17 Richter A, Hermle M, Glunz S W. IEEE Journal of Photovoltaics,2013,3(4),1184.18 Islam R, Saraswat K C. In: Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th. Denver,2014,pp.285.19 Dwivedi N, Kumar S, Bisht A, et al. Solar Energy,2013,88,31.20 Wen X, Zeng X, Liao W, et al. Solar Energy,2013,96(4),168.21 Liu J, Huang S H, He L. Journal of Semiconductors,2015,36(4),78(in Chinese)刘剑,黄仕华,何绿.半导体学报,2015,36(4),78.22 Conibeer G. Materials Today,2007,10(11),42.23 Zhao J, Wang A, Altermatt P P, et al. In: Photovoltaic Energy Conversion Conference of the Twenty Fourth. IEEE Photovoltaic Specialists Conference, IEEE First World Conference. Anaheim,1994,pp.1203.24 Blakers A W, Wang A, Milne A M, et al. Applied Physics Letters,1989,55(13),1363.25 Zhao J, Wang A, Altermatt P P, et al.In:Photovoltaic Specialists Confe-rence: Conference of the Twenty-Ninth IEEE. New orleans,2002,pp.218.26 Zhao J, Wang A, Green M A. Solar Energy Materials & Solar Cells,2001,65(1-4),429.27 Schneiderlöchner E, Preu R, Lüdemann R, et al. Progress in Photovoltaics Research & Applications,2010,10(1),29.28 Lyu R J . Observation on New Energy Economy and Trade, 2017(10),26(in Chinese).吕荣洁.新能源经贸观察, 2017(10),26.29 Lyu J. In: The 13th Chinese Solar Grade Silicon and Photovoltaic Power Generation Seminar in 2017,Xuzhou,2017.pp.16(in Chinese).吕俊.2017年第十三届中国太阳级硅及光伏发电研讨会.徐州,2017,pp.16.30 Mu H Y, Yao T T, Zhang Z Y, et al. Science and Technology Innovation Herald,2018 15(17),111(in Chinese).穆红岩,姚甜甜,张志勇,等.科技创新导报,2018,15(17),111.31 Kerschaver E V, Beaucarne G. Prostate,2010,14(2),107.32 Stang J C, Franssen T, Haschke J, et al. Solar RRL,2017,1(3-4),1700021.33 Cousins P J, Smith D D, Luan H C, et al. In: Photovoltaic Specialists Conference, Hawaii,2010,pp.275.34 Carrere T,Varache R,Perchec J L,et al. Energy Procedia,2015,77,451.35 Tanaka M, Taguchi M, Matsuyama T, et al. Japanese Journal of Applied Physics,1992,31(11R),3518.36 Fujishima D, Inoue H, Tsunomura Y, et al. In:Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE. Hawaii, 2010,pp.3137.37 Kinoshita T, Fujishima D, Yano A, et al. In: Proc. 26th European Photovoltaic Solar Energy Conference. Hamburg,2011,pp.871.38 Taguchi M, Yano A, Tohoda S, et al. IEEE Journal of Photovoltaics,2014,4(1),96.39 Boriskina S V, Green M A, Catchpole K, et al. Journal of Optics,2016,18(7),073004.40 Taguchi M, Sakata H, Yoshimine Y, et al. In: Photovoltaic Specialists Conference: Conference of the Thirty-first IEEE. Florida,2005,pp.866.41 Jia X P, Power Supply Technology,2011,35(2),127(in Chinese).贾旭平.电源技术,2011,35(2),127.42 De Wolf S, Olibet S, Ballif C. Applied Physics Letters,2008,93(3),439.43 Descoeudres A,Allebé C,Badel N,et al. Energy Procedia,2015,77,508.44 Hernández J L, Adachi D, Yoshikawa K, et al. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt,2012,pp.24.45 Heng J B, Fu J, Kong B, et al. IEEE Journal of Photovoltaics,2014,5(1),82.46 Meng F,Shen L,Shi J,et al. Applied Physics Letters,2015,107(22),96.47 Meng F, Liu J, Shen L, et al. Frontiers in Energy,2017,11(1),78.48 Tao Y, Upadhyaya V, Jones K, et al. AIMS Materials Science,2016,3(1),180.49 Stegemann B, Gad K M, Balamou P, et al. Applied Surface Science,2017,395,78.50 Tong J, Wang X, Ouyang Z, et al. Energy Procedia,2015,77,840.51 Hernández J L, Adachi D, Schroos D, et al. In: Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition. Alaska,2013,pp.741.52 Reichel C, Feldmann F, Müller R, et al. Proceedings of the 29th European PV Solar Energy Conference and Exhibition, Amsterdam,2014,pp.487.53 Tao Y, Upadhyaya V, Chen C W, et al. Progress in Photovoltaics: Research and Applications,2016,24(6),830.54 Peibst R, Larionova Y, Reiter S, et al. In: 32nd European Photovoltaic Solar Energy Conference and Exhibition. Munich,2016,pp.323.55 Römer U, Peibst R, Ohrdes T, et al. Solar Energy Materials & Solar Cells,2014,131,85.56 Rienäcker M,Merkle A,Römer U,et al. Energy Procedia,2016,92,412.57 Reiter S,Koper N,Reineke-Koch R,et al. Energy Procedia,2016,92,199.58 Peibst R, Römer U, Larionova Y, et al. Solar Energy Materials and Solar Cells,2016,158,60.59 Stodolny M K, Lenes M, Wu Y, et al. Solar Energy Materials & Solar Cells,2016,158,24.60 Rienäcker M, Bossmeyer M, Merkle A, et al. IEEE Journal of Photovol-taics,2017,7(1),11.61 Bullock J, Hettick M, Geissbühler J, et al. Nature Energy,2016,1,15031.62 Rehman A U, Lee S H. The Scientific World Journal,2013,13,470347.
[1] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[2] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed