Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3908-3914    https://doi.org/10.11896/cldb.18120205
  无机非金属及其复合材料 |
Si/PEDOT∶PSS异质结太阳能电池研究进展
方文中1,2,†, 孙韬2,3,†, 端勇1,2, 王盼1,2, 倪子涛2,3, 杨宇2,3
1 云南大学材料科学与工程学院,昆明 650091
2 云南大学国家光电子能源材料国际联合研究中心,昆明 650091
3 云南大学能源研究院,昆明 650091
Research Progress of Si/PEDOT∶PSS Heterojunction Solar Cells
FANG Wenzhong1,2,†, SUN Tao2,3,†, DUAN Yong1,2, WANG Pan1,2, NI Zitao2,3, YANG Yu2,3
1 College of Materials Science and Engineering, Yunnan University, Kunming 650091
2 National Joint Research Center for Photovoltaic Energy Materials, Yunnan University, Kunming 650091
3 Institute of Energy Research, Yunnan University, Kunming 650091
下载:  全 文 ( PDF ) ( 2465KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以有机材料作为空穴传输层的Si/有机杂化太阳能电池由于其器件结构与制备工艺的不断优化,在短期内实现了理论探究与合成应用的快速增长。但有机材料具有的导电性低和复合界面间稳定性差等缺点,严重影响了复合器件的光电转化效率和使用寿命,阻碍了异质结太阳能电池的技术发展与市场应用。在Si/有机杂化太阳能电池领域,聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT∶PSS)是目前为止效果最佳的有机半导体。PEDOT∶PSS具有高导电性和高透过率等特点,使其成为一种理想的有机空穴传输层材料,并在异质结太阳能电池技术发展和工业应用中脱颖而出。利用PEDOT∶PSS的高导电性能可实现空穴的有效传输,其较高的透过性降低了P-N结生成过程中的寄生吸收,并且在制备中免去了传统硅基太阳能电池所需的高温环节,有效地降低了实际生产成本。近五年来,为降低PEDOT∶PSS中绝缘的PSS对电子传输和表面复合性的影响,大量学者进行了掺杂改性和界面设计的研究工作,有效降低了绝缘性PSS带来的影响,充分发挥了PEDOT高透性和高导电率的优势,优化表面陷光性和器件稳定性,实现了光电转化效率从5.09%至17.4%的大幅度跳跃。
本文从Si/PEDOT∶PSS异质结太阳能电池的结构与工作原理出发,重点介绍了Si材料和PEDOT∶PSS有机物的表面修饰、PEDOT∶PSS的掺杂改性、界面氧化层改性和对嵌入式微电网电极改造手段及它们对整体器件性能提升的影响等工作,归纳并分析了Si/PEDOT∶PSS杂化太阳能电池的最新研究进展,展望了太阳能电池的技术研发和理论研究,对未来Si/PEDOT∶PSS异质结太阳能电池的实验室技术研发与工业化生产应用具有一定参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方文中
孙韬
端勇
王盼
倪子涛
杨宇
关键词:  Si基  异构杂化  结构  转化效率    
Abstract: Si/organic hybrid solar cells, using organic materials as photohole transporting layers, have been achieved significant developments of in recent years caused by the optimization of material modification and device retrofit. However, the organic composites’ shortages, like low electrical conductivity and interface instability, seriously affected power conversion efficiency (PCE) and device lifetime, and hindered the deve-lopment of photovoltaic technologies and applications. As the best organic materials for Si/organic heterojunction solar cells, PEDOT∶PSS, owing to its excellent conductivity and transmittance, became an ideal organic material and used for photohole-transporting layers. Comparing to traditional silicon-based solar cells, the combined PEDOT∶PSS layer has high conductivity for effectively transferring generated holes, and the high permeability reduces the parasitic absorption. In addition, the assembly process is not require high temperature, remarkably reducing the production costs. But the PSS components is insulative and deteriorates the conductivity and stability of PEDOT∶PSS film, thereby, numerous research work focused on the material modification and device conversation via material synthesis, micro-interface design, structural reorganization and other techniques. Their significant job greatly promoted the preparative techniques and applications of Si/PEDOT∶PSS solar cells, and dramatically increased the PCE from 5.09% to 17.4%.
Thus, this article studies the structures and working principles of Si/PEDOT∶PSS heterojunction solar cells firstly, particularly investigates the methods and mechanisms of micro surface design, interface oxide-layer introduction, doping modification, microgrid electrode intercalation and other optimal approaches. We also supplies our prospects for the technical development and theoretical analysis, which might provide some suggestions for the technological development and industrial manufactory of Si/PEDOT∶PSS heterogeneous junction solar cells.
Key words:  Si based    heterogeneous hybridization    structure    conversion efficiency
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TM914.4  
基金资助: 云南省应用基础研究计划项目(2018FD012);东陆青年项目(WX06951);云南大学服务地方行动计划(2016MS15)
作者简介:  方文中, 2017年毕业于盐城工学院材料科学与工程专业,获得工学学士学位。现为云南大学硕士研究生,在杨宇教授的指导下进行研究。目前主要研究领域为硅纳米材料与有机薄膜集成的太阳能电池应用。
孙韬,云南大学副研究员,硕士研究生导师。2011年毕业于澳大利亚新南威尔士大学化学工程专业,2015年毕业于澳大利亚格里菲斯大学材料科学专业获博士学位,2016年在云南大学能源研究院工作至今。主要研究领域为光/电催化材料合成应用与复合集成的太阳能电池应用研究。
杨宇,云南大学教授 ,能源研究院院长, 博士研究生导师。1995 年在复旦大学物理系凝聚态物理专业取得博士学位;1995年到1997年,在中国科学院上海冶金研究所从事博士后的研究工作;2006年到2008年期间,以访问学者的身份在哈佛大学工程与应用科学院进行科学研究。担任《材料导报》、《红外技术》、《功能材料》、《人工晶体学报》等杂志编委。现担任云南大学学术委员会、省科技厅专家、云南高校学术委员会委员、云南高校科研理事长及863材料科学与工程领域的通讯评审专家。研究领域包括:半导体低维材料光电性能研究和器件的制备和新能源材料与器件。
引用本文:    
方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
FANG Wenzhong, SUN Tao, DUAN Yong, WANG Pan, NI Zitao, YANG Yu. Research Progress of Si/PEDOT∶PSS Heterojunction Solar Cells. Materials Reports, 2019, 33(23): 3908-3914.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120205  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3908
1 Jelle B P. Energies,2015,9(1),21.2 Song T, Lee S T, Sun B. Journal of Materials Chemistry,2012,22(10),4216.3 Wright M, Uddin A. Solar Energy Materials and Solar Cells,2012,107,87.4 Fan Q, Zhang Q, Zhou W, et al. Nano Energy,2017,33,436.5 Chen J, Yang L, Ge K, et al. Applied Physics Letters,2017,111(18),183904.6 Jäckle S, Liebhaber M, Gersmann C, et al. Scientific Reports,2017,7(1),2170.7 He L, Jiang C, Wang H, et al. Applied Physics Letters,2012,100(7),073503.8 Liu R, Lee S T, Sun B. Advanced Materials,2014,26(34),6007.9 Liu Y, Zhang Z G, Xia Z, et al. ACS Nano,2015,10(1),704.10 Liu Q, Ono M, Tang Z, et al. Applied Physics Letters,2012,100(18),183901.11 Zielke D, Pazidis A, Werner F, et al. Solar Energy Materials and Solar Cells,2014,131,110.12 He J, Gao P, Liao M, et al. ACS Nano,2015,9(6),6522.13 Wu S, Cui W, Aghdassi N, et al. Advanced Functional Materials,2016,26(28),5035.14 Liu R, Sun B. Acta Chimica Sinica,2015,73(3),225.15 Liu D, Zhang Y, Fang X, et al. IEEE Electron Device Letters,2013,34(3),345.16 Yu P, Tsai C Y, Chang J K, et al. ACS Nano,2013,7(12),10780.17 Zhang F, Liu D, Zhang Y, et al. Acs Applied Materials and Interfaces,2013,5(11),4678.18 Zhang Y, Zu F, Lee S T, et al. Advanced Energy Materials,2014,4(2),1300923.19 Zhang Y, Cui W, Zhu Y, et al. Energy and Environmental Science,2015,8(1),297.20 Pudasaini P R, Ruiz-zepeda F, Sharma M, et al. ACS Applied Materials and Interfaces,2013,5(19),9620.21 Zhang C, Zhang Y, Guo H, et al. Energies,2018,11(6),1397.22 Zhang F, Sun B, Song T, et al. Chemistry of Materials,2011,23(8),2084.23 Shen X, Sun B, Liu D, et al. Journal of the American Chemical Society,2011,133(48),19408.24 Xia Z, Song T, Sun J, et al. Applied Physics Letters,2014,105(24),241110.25 Thomas J P, Leung K T. Advanced Functional Materials,2014,24(31),4978.26 Li Q, Yang J, Chen S, et al. Nanoscale Research Letters,2017,12(1),506.27 Hsu H C, Lai Y, Hsieh W C, et al. IEEE Journal of Photovoltaics, DOI: 10.1109/JPHOTOV.2019.289406047.28 Shiu S C, Chao J J, Hung S C, et al. Chemistry of Materials,2010,22(10),3108.29 He J, Yang Z, Liu P, et al. Advanced Energy Materials,2016,6(8),1501793.30 Liu Q, Ishikawa R, Funada S, et al. Advanced Energy Materials,2015,5(17),1500744.31 Kasahara K, Hossain J, Harada D, et al. Solar Energy Materials and Solar Cells,2018,181,60.32 He J, Gao P, Yang Z, et al. Advanced Materials,2017,29(15),160632133 Liu Y, Zhang J, Wu H, et al. Nano Energy,2017,34,257.34 Sheng J, Wang D, Wu S, et al. RSC Advances,2016,6(19),16010.35 Wang D, Sheng J, Wu S, et al. Applied Physics Letters,2016,109(4),043901.36 He J, Gao P, Ling Z, et al. ACS Nano,2016,10(12),11525.37 Wan Y, Samundsett C, Bullock J, et al. ACS Nano,2017,7(5),1601863.38 Garnett E, Yang P. Nano Letters,2010,10(3),1082.39 Jeong S, Mcgehee M D, Cui Y. Nature Communication,2013,4,2950.40 Wang S, Weil B D, LI Y, et al. Nano Letters,2013,13(9),4393.41 Brodoceanu D, Elnathan R, Prieto-simon B, et al. Applied Materials and Interfaces,2015,7(2),1160.42 Liu Q, Khatri I, Ishikawa R, et al. Applied Physics Letters,2013,102(18),183503.43 Wu F, Li P, Sun K, et al. Advanced Electronic Material,2017,3(7),1700047.44 Mcgillivray D, Thomas J P, Abd-ellah M, et al. Applied Materialsand Interfaces,2016,8(50),34303.45 Nam Y H, Song J W, Park M J, et al. Nanotechnology,2017,28(15),155402.46 Wenham S. Research and Applications,1993,1(1),3.47 Bullock J, Ota H, Wang H, et al. Scientific Reports,2017,7(1),9085.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[4] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[7] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[8] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[9] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[10] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[11] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[12] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[13] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[14] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[15] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed