Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3900-3907    https://doi.org/10.11896/cldb.19020021
  无机非金属及其复合材料 |
不同种类金属掺杂改性TiO2材料光催化性能的研究进展
李大玉, 张文韬, 张超
扬州大学机械工程学院,扬州 225127
Research Progress in Improving the Photocatalytic Properties of TiO2 Materialsby Doping with Different Metals
LI Dayu, ZHANG Wentao, ZHANG Chao
College of Mechanical Engineering, Yangzhou University, Yangzhou 225127
下载:  全 文 ( PDF ) ( 1551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 半导体光催化剂因可以直接利用太阳光进行光催化且不产生二次污染,成为一种应用于环境污染治理领域较为理想的材料。其中TiO2光催化剂具有较高的光稳定性、良好的化学性质、无毒、较低的成本、高的光催化效率等特点,目前受到广泛的研究与关注。
然而,TiO2快速复合的电子-空穴及较大的禁带宽度等自身缺陷,导致其量子产率不高,TiO2中的电子只能在紫外光下被激发,这些因素使得它的光催化性能受到了制约。因此,近年来通过研究不同的金属元素掺杂TiO2基光催化剂及研究不同特殊微纳结构来克服TiO2自身缺陷以改善其光催化性能并取得较大的进展。
研究发现,通过将不同金属(如Ag、Fe、Cu、Ce等)以一元、二元、多元的形式掺入TiO2中,可改善TiO2的自身缺陷,并在催化剂表面产生不同作用,使其光响应范围增大,光催化性能显著提升。此外,研究者们还发现,特殊微纳结构的存在可以加快金属掺杂TiO2基光催化材料的电子转移,从而提高TiO2光生电子-空穴的分离效率,增加了其量子产率。金属掺杂后,TiO2对有机物的降解率及其产氢能力、光能转化率都得到了显著的提高,使其不仅在紫外光下具有优异的性能,而且在可见光下也能进行良好的光催化。掺杂后TiO2的抗菌效果与防雾性能也得到了显著的提升。
本文一方面综述了不同金属掺杂体系(一元、二元复合以及多元复合掺杂)对TiO2结构及其光催化性能的改变,总结不同制备工艺对TiO2结构与性能的影响规律,并分析光催化性能的增强机制。另一方面概述了金属掺杂TiO2基复合材料的一些特殊微纳结构包括石墨烯包覆结构、核-壳结构以及其他结构的制备工艺,并讨论了不同微纳结构与金属掺杂在增强TiO2光催化性能上所起的作用。最后简单综述了不同金属掺杂TiO2纳米复合材料的不同应用,展望了未来研究方向及应用领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李大玉
张文韬
张超
关键词:  金属掺杂  二氧化钛  纳米结构  光催化    
Abstract: The semiconductor photocatalyst is an ideal material for environmental pollution treatment because it can directly use solar light for photocata-lysis without secondary pollution. Among them, TiO2 photocatalyst has been widely studied and paid attention to because of its high light stability, good chemical properties, non-toxicity, low cost and high photocatalytic efficiency.
However, the rapid recombination of electron-holes of TiO2 leads to a lower quantum yield, which limits its photocatalytic performance. Moreover, because of the large forbidden band width of TiO2 photocatalyst, its electrons can only be excited under ultraviolet light, and the utilization rate of solar energy is relatively low, which limits its application under visible light. Therefore, in recent years, the photocatalytic performance has been improved by studying the doping of TiO2 with different metal elements and the metal doped TiO2-based photocatalyst with special micro/nano structure, and has made great progress.
It is found that the doping of metal elements reduces the recombination rate of TiO2 electron-holes, narrows the forbidden band width of TiO2, and increases the photoresponse range, thereby enhancing the photocatalytic performance and expanding its application prospect under visible light. In addition, the researchers found that the existence of special micro-nanostructures can accelerate the electron transfer of metal-doped TiO2-based composites, thus increasing the separation efficiency of TiO2 photogenerated electron-holes and increasing their quantum yield. After metal doping, TiO2 has significantly improved the degradation rate of organic matter, hydrogen production capacity and light energy conversion rate, and its antibacterial effect and anti-fog performance have also been significantly improved.
On the one hand, this paper reviews the changes of TiO2 structure and photocatalytic properties of different metal doping systems including single element, binary composite and multi-component doping. The effects of different preparation processes on structure and properties are summarized, and the enhancement mechanism of photocatalytic performance is analyzed. On the other hand, preparation processes on some special micro-nano structures of metal-doped TiO2-based composites, including graphene cladding structure, core-shell structure and other structures, are discussed. Different micro-nano structures and metal doping for enhanced photocatalysis are discussed. Finally, the different applications of different metal doped TiO2 nanocomposites are briefly reviewed, and the future research directions and application fields are prospected.
Key words:  metal doping    titanium dioxide    nano-structure    photocatalysis
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TB34  
  TB321  
  TB333  
基金资助: 国家自然科学基金(51602279);江苏省高校优秀中青年教师和校长赴境外研修项目(2017-170);扬州大学高端人才和青蓝工程支持计划(2018)
作者简介:  李大玉,扬州大学副教授,获2017年度江苏省 “双创计划”人才项目,2015年扬州市“绿扬金凤”人才计划,扬州大学高端人才计划和优秀青年骨干教师称号。2003年9月至2010年4月,在西安理工大学获材料科学与工程专业工学学士学位和材料科学与工程专业工学硕士学位,2010年5月至2013年9月,在西北工业大学和法国南特大学获材料科学与工程专业博士学位。2013年10月至2014年5月,在法国国家科学院Jean-Rouxel材料研究所从事博士后工作。以第一作者在国内外学术期刊上发表论文20余篇并担任多个学术期刊的审稿人,申请国家发明专利12项,其中授权6项。研究工作主要围绕国家重点发展的先进功能材料,开展关于先进加工工艺以及组织性能控制的基础理论和应用研究,主持包括国家自然科学基金项目、江苏省和扬州市的一些基础科研项目等。
张超,扬州大学教授,博士研究生导师,入选2013年度江苏省 “特聘教授”项目。1999年9月至2003年7月,在重庆大学获得材料科学与工程专业工学学士学位,2003年8月至2008年6月,在西安交通大学和法国贝尔福蒙贝利亚技术大学获得材料科学与工程专业博士学位。2007年9月至2009年1月,在法国贝尔福蒙贝利亚技术大学从事助教工作。2009年2月至2013年12月,在比利时蒙斯大学材料工程学院从事博士后工作。2014年引进到扬州大学工作,并带领一个研究小组主要从事热喷涂和气体传感器方面的研究工作, 并从2016年开始担任扬州大学机械工程学院副院长。
引用本文:    
李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
LI Dayu, ZHANG Wentao, ZHANG Chao. Research Progress in Improving the Photocatalytic Properties of TiO2 Materialsby Doping with Different Metals. Materials Reports, 2019, 33(23): 3900-3907.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020021  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3900
1 Mo Q Y, Zeng F J, Zhang S, et al. Scientific and Technological Innovation Information,2018(30),79(in Chinese).莫秋燕,曾凡菊,张颂,等.科学技术创新,2018(30),79.2 Sheng G D, Li J X, Wang S W, et al. Progress in Chemistry,2009,21(12),2492(in Chinese).盛国栋,李家星,王所伟,等.化学进展,2009,21(12),2492.3 Yang H, Pan C X. Journal of Alloys and Compounds,2010,501(1),L8.4 Xua J J, Ao Y H, Chen M D, et al. Applied Surface Science,2010,256(13),4397.5 Wang Z G, Zheng S N, Jia C Y, et al. Chinese Journal of Inorganic Chemistry,2010,26(5),875(in Chinese).王泽高,郑树楠,贾春阳,等.无机化学学报,2010,26(5),875.6 Li J, Sun L, Zhuang H F, et al. Journal of Electrochemistry,2008,14(2),213(in Chinese).李静,孙岚,庄惠芳,等.电化学,2008,14(2),213.7 Luo H, Takata T, Zhao J, et al. Chemistry of Materials,2004,16,846.8 Du H L, Zhang Z Z, Li Y, et al. Materials Review A:Review Papers,2011,25(7),20(in Chinese).杜红莉,张兆志,李艳,等.材料导报:综述篇,2011,25(7),20.9 Zu Y, Li X E, Wei Z X, et al. Journal of Northwestern Polytechnical University(Natural Science Edition),1998,28(1),51(in Chinese).祖庸,李晓娥,卫志贤,等.西北大学学报(自然科学版),1998,28(1),51.10 Hu J, Deng J G, He S Y, et al. Journal of Materials Science and Engineering,2001,19(4),72(in Chinese).胡娟,邓建刚,何水样,等.材料科学与工程,2001,19(4),72.11 Hao D Z, Han P G, Niu M S. Journal of Optoelectronics·Laser,2018,29(7),723(in Chinese).郝殿中,韩培高,牛明生.光电子·激光,2018,29(7),723.12 Demirci S, Dikici T, YurddaŞkal M, et al. Applied Surface Science,2016,390,591.13 Pan J H, Wu L G, Wang T, et al. Acta Scientiae Circumstantiae,2018,38(12),4670(in Chinese). 潘家豪,吴礼光,王挺,等.环境科学学报,2018,38(12),4670.14 Zhu X D, Wang C X, Pei L X, et al. Journal of Synthetic Crystals,2018,47(6),1136(in Chinese). 朱晓东,王尘茜,裴玲秀,等.人工晶体学报,2018,47(6),1136.15 Li H, Du Y P, Yuan X, et al. Environmental Engineering,2018(36),8(in Chinese).李红,杜燕萍,袁鑫,等.环境工程,2018(36),8.16 Valero-Romero M J, Santaclara J G, Oar-Arteta L, et al. Chemical Engineering Journal,2019,360,75.17 Lassoued M S, Lassoued A, Abdelbaky M S M, et al. Journal of Mate-rials Science: Materials in Electronics,2018,29(7),6019.18 Moradi V, Jun M B G, Blackburn A, et al. Applied Surface Science,2017,427,791.19 Liu S Y, Zuo C G, Chen Y D, et al. Journal of Synthetic Crystals,2017,46(8),1553(in Chinese). 刘少友,左成钢,陈远道,等.人工晶体学报,2017,46(8),1552.20 Ci L J, Zhang S Y, Liang H X, et al. Materials Review B: Research Papers,2010,24(7),92(in Chinese).次立杰,张绍岩,梁慧霞,等.材料导报:研究篇,2010,24(7),92.21 Zhang H, Qian F P. Paint & Coatings Industry,2011,41(5),46(in Chinese).张浩,钱付平.涂料工业,2011,41(5),46.22 Colón G, Maicu M, Hidalgo M C, et al. Applied Catalysis B Environmental,2006,67,41.23 Heciak A, Morawski A W, Grzmil B, et al. Applied Catalysis B Environmental,2013,140,109.24 Guo X Y, Li X Q, Qin L X, et al. Applied Catalysis B Environmental,2019,243,1.25 Sun H, Zhan D F, Li S. New Chemical Materials,2018,46(7),93(in Chinese).孙慧,赵东风,李石.化工新型材料,2018,46(7),93.26 Kaur R, Pal B. Journal of Molecular Catalysis A Chemical,2012,355(3),39.27 Rossi G, Pasquini L, Catone D, et al. Applied Catalysis B: Environmental,2018,237,603.28 Nguyen C H, Fu C, Juang R,et al. Journal of Cleaner Production,2018,202,413.29 Li Y X, Li D, Chen Z L. New Chemical Materials,2018,46(7),143(in Chinese).李远勋,李荡,陈振玲.化工新型材料,2018,46(7),143.30 Hernández-Gordillo A, González V R. Chemical Engineering Journal,2015,261,53.31 Lin X H, Chen H, Hu Z B. Solid State Sciences,2018,83,181.32 Xue R J, Dai X Y, Huang J. Journal of Anhui University of Science and Technology(Natural Science),2012,32(2),18(in Chinese).薛茹君,代新营,黄静.安徽理工大学学报(自然科学版),2012,32(2),18.33 Qi H, Lee J, Wang L, et al. Journal of Advanced Oxidation Technologies,2016,19,302.34 Qiu H J, Guan Y, Luo P, et al. Biosens Bioelectron,2017,89,85.35 Yazici E, Yanik S, Yilmaz M B. Carbon,2017,111,822.36 Xu F, Zhang H Y, Sun Y. Optik-International Journal for Light and Electron Optics,2017,131,588.37 Zhang J J. Preparation of TiO2-graphene matrix composites and its application in dye wastewater purification. Master’s Thesis, Zhengzhou University, China,2017(in Chinese).张婧杰.TiO2-graphene基复合材料的制备及其在染料污水净化中的应用研究.硕士学位论文,郑州大学,2017.38 Shi J B, Chen G Q, Zeng G M, et al. Ceramics International,2018,44,7473.39 Ni Y R, Wang W, Huang W J, et al. Journal of Colloid and Interface Science,2014,428,162.40 Lavanya T, Dutta M, Ramaprabhu S, et al. Journal of Environmental Chemical Engineering,2017,5,494.41 Lavanya T, Dutta M, Satheesh M. Separation and Purification Technology,2016,168,284.42 Zhao Y, Wei Y, Wu X, et al. Applied Catalysis B Environmental,2018,226,360.43 Du Q, Ma J, Shao X, et al. Chemical Physics Letters,2019,714,208.44 Kumar N G, Manohar M S, Kwang-Un J, et al. Journal of Alloys and Compounds,2019,771,508.45 Ding R, Wang K, Hong K, et al. Chemical Physics Letters,2019,714,156.46 Li Y F, Liu F F, Fan Y, et al. Applied Surface Science,2018,462,207.47 Zhou X F, Zhong D L, Luo H, et al. Applied Surface Science,2018,427,1183.48 Salehi M, Eshaghi A, Tajizadegan H, et al. Journal of Alloys and Compounds,2019,778,148.49 Zhang Y, Chen J R, Tang H, et al. Journal of Hazardous Materials,2018,354,17.50 Ziarati A, Badiei A, Rafael L. Applied Catalysis B: Environmental,2018,238,177.51 Dalod A R M, Henriksen L, Grande T, et al. Beilstein Journal of Nanotechnology,2017,8(1),305.52 Chen Y, Sun L L, Sun N N. Materials Review B: Research Papers,2013,27(7),135(in Chinese).陈颖,孙露露,孙男男.材料导报:研究篇,2013,27(7),135.53 Zhou R R, Pei Y Q, He X Q, et al. Guangzhou Chemical Industry,2018,46(16),73(in Chinese).周冉冉,裴英琪,何小庆,等.广州化工,2018,46(16),73.54 Gong Y, Liu H J, Jiao Y R, et al. New Chemical Materials,2017,45(4),168(in Chinese).弓莹,刘慧瑾,焦玉荣,等.化工新型材料,2017,45(4),168.55 Araña J, González Díaz O, Saracho M M, et al. Applied Catalysis B Environmental,2002,36(2),113.56 Pastrana-Martínez L M, Morales-Torres S, et al. Applied Surface Science,2018,458,839.57 Chen W T, Chan A, Sun-Waterhouse D X, et al. Journal of Catalysis,2018,367,27.58 Saravanan R, Manoj D, Qin J, et al. Process Safety and Environmental Protection,2018,120,340.59 Obregón S, Muñoz-Batista M J, Fernández-García M, et al. Applied Catalysis B Environmental,2015,179,468.60 Jo W K, Jin Y J. Journal of Alloys and Compounds,2018,765,106.61 Cheng R, Kang M, Shen Z P, et al. Journal of Environmental Sciences,2019,3,386.62 Zhang M Y, Wu Y J, Liu Z Y, et al. Modern Chemical Industry,2018,38(11),77(in Chinese).张曼莹,邬艳君,刘姿铔,等.现代化工,2018,38(11),77.63 AL-Jawad S M H, Taha A A, Salim M M, et al. Optik,2017,142,42.64 Wang Y W, Chen C W, Hsieh J H, et al. Ceramics International,2017,43,797.65 Deng Y F, Ma Z H, Ming X L, et al. Semiconductor Optoelectronics,2018,39(4),535(in Chinese).邓亚丰,马战红,明晓丽,等.半导体光电,2018,39(4),533.66 Dahlan D, Md Saad S K, Berli A U, et al. Physica E: Low-dimensional Systems and Nanostructures,2017,91,185.67 Duan Z F, Zhu Y, Ren P R, et al. Applied Surface Science,2018,452,165.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[10] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[11] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[12] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[13] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[14] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[15] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed