Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3662-3668    https://doi.org/10.11896/cldb.18100186
  高分子与聚合物基复合材料 |
基于生物精细构型的光催化材料和光热转换材料的研究进展
孙诚1, 顾佳俊1, 章潇慧2, 祝弘滨2, 刘佰博2, 张丽娇2, 刘庆雷1, 张旺1, 张荻1
1 上海交通大学金属基复合材料国家重点实验室,上海 200240
2 中车工业研究院有限公司,北京 100070
Research Progress of Photocatalytic Materials and Photothermal ConversionMaterials Based on Biological Fine Configuration
SUN Cheng1, GU Jiajun1, ZHANG Xiaohui2, ZHU Hongbin2, LIU Baibo2, ZHANG Lijiao2, LIU Qinglei1,ZHANG Wang1, ZHANG Di1
1 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
2 CRRC Academy, Beijing 100070
下载:  全 文 ( PDF ) ( 20870KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,全球性的能源危机和环境污染问题备受关注。太阳能作为一种可再生的能源,实现其清洁、高效和低成本的转换及利用具有十分重要的意义。其中,利用光催化可将太阳能转换为可存储和运输的氢能,而通过光热效应可借助太阳能对海水进行淡化,这将有助于缓解能源短缺、环境污染以及淡水资源紧缺等问题。
    如何提高光能转换材料的能量转换效率是当今太阳能转换领域的关键课题。材料的性质由多种因素决定,其中构型是最重要的因素之一。因此,优良的材料构型设计成为材料、化学、生物等多学科、多领域的研究热点,以满足光电催化、光热治疗、能量转换与存储等不同领域的应用需求。然而,目前人工制备手段以“自下而上”的化学自组装与“自上而下”的物理加工方法为主,不仅成本和效率难以兼顾,更难以精准构筑具有复杂精细三维分级构型的微纳结构。对此,有学者提出“遗态材料”的概念,借鉴自然界生物体(包括微生物、动物以及植物)的精细构型,并以自然界生物体结构作为模板,制备出具有特殊结构和功能的材料。这为当今许多领域的科学研究提供了丰富的灵感和启发。
    近年来,基于生物精细构型的光能转换遗态材料发展迅速,在光电催化及光热领域取得了丰硕的成果。受自然界中的光合作用启发,可通过光催化反应将太阳能转换为化学能。具有三维分级结构的材料的各向异性强、反应接触面积大、微纳米孔多,能够有效增强半导体催化剂的电学、光学特性和催化性能。以树叶、蝴蝶等生物为模板的微纳多孔结构材料提高了催化剂对入射光的吸收,同时也为水分解反应提供了更多的反应位点,其产氢性能比普通构型的材料提高了数倍。同时,在光热水蒸发系统中,木材、蝶翅、莲蓬等模板由于快速的吸水能力、高效的光吸收和光增强能力以及良好的隔热性能,其与金属纳米颗粒的复合材料具有优异的光热蒸发速率与光热转换效率。
    本文从光催化水分解与光热水蒸发两个领域的应用方面,分别介绍了基于树叶、蝴蝶、硅藻等天然生物精细分级结构的高效太阳能转换材料的构筑及应用,对设计、制备具有分级微纳构型的光能转换材料提供一定的理论参考和借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙诚
顾佳俊
章潇慧
祝弘滨
刘佰博
张丽娇
刘庆雷
张旺
张荻
关键词:  太阳能转换  生物精细构型  光催化  光热转换    
Abstract: The global energy crisis and environmental pollution have long come to the foreground of our attention. As a kind of renewable energy, clean, low-cost and efficient solar energy conversion and utilization are of great significance. The solar energy can be converted into hydrogen energy which can be stored and transported through the photocatalysis, and the sea water can be desalinated by the solar energy through the photothermal effect. Both of them can help to alleviate the problems of energy shortage, environmental pollution and shortage of fresh water resources and the like.
    How to improve the energy conversion efficiency oflight energy conversion materials is a key issue in the field of solar energy conversion. The properties of materials depend on a number of factors, among which configuration is one of the most important factors. Therefore, excellent material configuration design has become a research hotspot in many fields such as materials, chemistry, biology, etc., to attain the requirements for applications of photocatalysis, photothermal therapy, energy conversion and storage. However, at present, the main methodology of artificial preparation are “bottom-up” chemical self-assembly and “top-down” physical processing. Both of them are unlikely to balance both cost and efficiency and obtain hoped-for configurations. In view of this, some scholars put forward the concept of “Morphology genetic materials”, which refers to the fine configuration of natural organisms (including microorganisms, animals and plants).And, they have advocated utilizing the structure of natural organisms as template to prepare materials with special structures and functions, which had provided distinctive insights and inspiration for scientific research in many fields nowadays.
    In recent years, solar energy conversion materials based on biological fine configuration have developed rapidly, and a large number of outstanding achievements have emerged in the field of photoelectrocatalysis and photothermal conversion.Inspired by photosynthesis in nature, solar energy can be converted to chemical energy by photocatalysis reactions. Materials with three-dimensional hierarchical structure exhibits good anisotropy, large reaction contact area and sufficient micro-nano pores, which can effectively enhance the electrical, optical and catalytic properties of semiconductor. Micro-nano porous structure materials with leaves, butterflies and others organisms as templates could improve the absorption of incident light of the catalyst, and also provide more reaction sites for water splitting. The hydrogen production performance is several times hig-her than that of materials with common configuration. At the same time, in the photo-thermal water evaporation system, the composite materials consist of metal nanoparticles and butterfly wings, lotus or other templates show excellent photothermal evaporation rate and conversion efficiency due to the rapid water absorption capacity, efficient light absorption, light enhancement ability and good thermal insulation ability of biological templates. In this paper, construction and application of solar energy efficient conversion materials based on biological fine configuration such as lea-ves, butterflies, diatoms, etc. are summarized, including their application in photocatalytic water decomposition and light-driven water evaporation. This paper could provide valuable information for the study in design and preparation of light energy conversion materials with graded micro-nano configurations.
Key words:  solar energy conversion    biological fine configuration    photocatalysis    photothermal conversion
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TB383.1  
基金资助: 国家自然科学基金(51772187;51271116;51572169;51672175);国家科技重大专项(2017YFE0113000);上海市科学技术委员会项目基金(18JC1410500;17ZR1441400;17520710600;16520710900)
作者简介:  孙诚,2016年6月毕业于上海交通大学,获得工学学士学位。现为上海交通大学金属基复合材料国家重点实验室硕士研究生,在顾佳俊教授的指导下进行研究。目前主要研究领域为基于生物模板的遗态光催化及光热纳米材料。
    顾佳俊,上海交通大学材料科学与工程学院教授,博士生导师,国家自然科学基金青年、面上项目函评专家,2012年入选教育部“新世纪优秀人才支持计划”。1996、2005年分别于上海交通大学材料科学与工程学院获工学学士、博士学位(硕博连读),读博期间曾赴日本京都大学材料工学系留学(联合培养,18个月)。2005年至今在上海交通大学材料学院分别任讲师、副教授、教授。在职期间于2007年8月至2008年2月赴日本佐贺大学任特别研究员,2010年7月至2010年10月赴美国加州大学圣地亚哥分校进修。目前主要从事具有自然精细结构的新材料的设计制备、复合化与功能化研究。近年来主持国家自然科学基金面上项目1项(2012年批准)、青年项目1项(已结题);作为主要学术骨干参加国家自然基金重点项目1项(2011年批准);国家973项目3项(其中结题2项),国家863项目2项(其中结题1项)。
    张荻,上海交通大学材料科学与工程学院教授,材料学学科长江学者奖励计划特聘教授,教育部“长江学者奖励计划”材料学科特聘教授,金属基复合材料国家重点实验室主任,国家973项目首席科学家。1982年毕业西安交通大学材料科学系。1982年教育部公派赴日攻读研究生,1985、1988年在日本大阪大学获硕士和博士学位。1988年回国在上海交通大学任教,其中1991—1993年,1994—1995年在日本Yuass中央研究所工作,1996.11—1998.3在日本京都大学,大阪大学做访问教授,现任上海交通大学教授,教育部"长江学者奖励计划"特聘教授。国际期刊复合材料科学和技术编委会成员(Elsevier),中国复合材料学会的常务理事,金属和陶瓷复合材料的专业委员会主任,中国金属学报和复合材料学报编委。目前为止在国际期刊上发表了200多篇文章,自2001年以来获得省部级一等奖2项,二等奖、三等奖各1项。指导研究生获全国优秀博士论文2篇,获上海市优秀博士论文7篇。2009年获得国家级教学成果奖二等奖1项,2013年获上海市教学二等奖1项。
引用本文:    
孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
SUN Cheng, GU Jiajun, ZHANG Xiaohui, ZHU Hongbin, LIU Baibo, ZHANG Lijiao, LIU Qinglei,ZHANG Wang, ZHANG Di. Research Progress of Photocatalytic Materials and Photothermal ConversionMaterials Based on Biological Fine Configuration. Materials Reports, 2019, 33(21): 3662-3668.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100186  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3662
1 https://www.bp.com/en/global/corporate/energy-econo-mics/statistical-review-of-world-energy.html.
2 Bilgen S. Renewable and Sustainable Energy Reviews, 2014, 38 ,890.
3 Kannan N, Vakeesan D. Renewable and Sustainable Energy Reviews, 2016, 62, 1092.
4 Thirugnanasambandam M, Iniyan S, Goic R. Renewable and Sustainable Energy Reviews, 2010, 14 (1), 312.
5 Kinoshita S, Yoshioka S, Kawagoe K.Proceedings of the Royal Society B- Biological Sciences, 2002, 269 (1499), 1417.
6 Yu K, Fan T, Lou S, et al.Progress in Materials Science, 2013, 58 (6), 825.
7 Stegmaier T, Linke M, Planck H.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1894), 1749.
8 Tao P, Shang W, Song C, et al.Advanced Materials (Deerfield Beach, Fla.), 2015, 27 (3), 428.
9 Schmitz H , Kahl T , Soltner H , et al. In: Bioinspiracation, Biomimetion and Bioepieication. USA, 2011, pp. 7975.
10 Georg S, Peter H, Sam S, et al.Bioinspiration & Biomimetics, 2014, 9 (3), 036012.
11 Fujishima A, Honda K.Nature, 1972, 238, 37.
12 Xiang Q, Yu J, Jaroniec M.Journal of the American Chemical Society, 2012, 134 (15), 6575.
13 Nakata K, Fujishima A.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13 (3), 169.
14 Wu B, Liu D, Mubeen S, et al.Journal of the American Chemical Society, 2016, 138 (4), 1114.
15 Boumaza S, Boudjemaa A, Bouguelia A, et al.Applied Energy, 2010, 87 (7), 2230.
16 Ouyang S, Tong H, Umezawa N, et al.Journal of the American Chemical Society, 2012, 134 (4), 1974.
17 Xu X, Liu G, Randorn C, et al.International Journal of Hydrogen Energy, 2011, 36 (21), 13501.
18 Yuan Y J, Wang F, Hu B, et al. Dalton Transactions, 2015, 44 (24), 10997.
19 Wang X, Yao X.Carbon, 2014, 77, 667.
20 Choi Y, Beak M, Yong K.Nanoscale, 2014, 6 (15), 8914.
21 Zhou H, Li X, Fan T, et al.Advanced materials (Deerfield Beach, Fla.), 2010, 22 (9), 951.
22 Li X, Fan T, Zhou H, et al. Advanced Functional Materials, 2009, 19 (1), 45.
23 Zhou H, Ding L, Fan T, et al.Applied Catalysis B: Environmental, 2014, 147, 221.
24 Tong Z, Yang D, Li Z, et al. ACS Nano, 2017, 11 (1), 1103.
25 Yan R, Chen M, Zhou H, et al.Scientific Reports, 2016, 6, 20001.
26 Liu J, Antonietti M.Energy & Environmental Science, 2013, 6 (5), 1486.
27 Liu H, Zhao Q B, Zhou H, et al. Physical Chemistry Chemical Physics, 2011, 13 (23), 10872.
28 Yin C, Zhu S, Chen Z, et al.Journal of Materials Chemistry A, 2013, 1 (29), 8367.
29 Chandrasekaran S, Nann T, Voelcker N H. Nanomaterials (Basel, Swit-zerland), 2016, 6 (8), 144.
30 Neumann O, Urban A S, Day J, et al.ACS Nano, 2013, 7 (1), 42.
31 Ghasemi H, Ni G, Marconnet A M, et al.Nature Communications, 2014, 5, 4449.
32 Wang Z, Liu Y, Tao P, et al.Small, 2014, 10 (16), 3234.
33 Liu Y, Yu S, Feng R, et al.Advanced Materials (Deerfield Beach, Fla.), 2015, 27 (17), 2768.
34 Li X, Xu W, Tang M, et al.Proceedings of the National Academy of Sciences, 2016, 113 (49), 13953.
35 Li X, Lin R, Ni G, et al.National Science Review, 2018, 5 (1), 70.
36 Liu Z, Song H, Ji D, et al.Global Challenges (Hoboken, NJ), 2017, 1 (2), 1600003.
37 Shi L, Wang Y, Zhang L, et al.Journal of Materials Chemistry A, 2017, 5 (31), 16212.
38 Zhang P, Li J, Lv L, et al.ACS Nano, 2017, 11 (5), 5087.
39 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29 (28), 1606762.
40 Wheeler T D, Stroock A D.Nature, 2008, 455, 208.
41 Jingmin L, Chong L, Zheng X, et al.Plos One, 2012, 7 (11), e50320.
42 Jiang F, Li T, Li Y, et al.Advanced Materials, 2018, 30 (1), 1703453.
43 Zhu M, Li Y, Chen G, et al.Advanced Materials, 2017, 29 (44), 1704107.
44 Chen C, Li Y, Song J, et al.Advanced Materials,2017, 29 (30), 1701756.
45 Liu H, Chen C, Chen G, et al.Advanced Energy Materials, 2018, 8 (8), 1701616.
46 Fang J, Liu J, Gu J, et al.Chemistry of Materials, 2018, 30 (18), 6217.
47 Tian J, Zhang W, Gu J, et al.Nano Energy, 2015, 17, 52.
48 Pris A D, Utturkar Y, Surman C, et al.Nature Photonics, 2012, 6, 195.
49 Miyako E, Sugino T, Okazaki T, et al.ACS Nano, 2013, 7 (10), 8736.
50 Shen T W, Tsai M H, Lai Y S, et al. Optical and Quantum Electronics, 2017, 49 (9), 295.
51 Wang P, Zhang J, He H, et al.Nanoscale, 2014, 6 (22), 13470.
52 Mocatta D, Cohen G, Schattner J, et al.Science, 2011, 332 (6025), 77.
53 Cao Y C.Science, 2011, 332 (6025), 48.
54 Bryan J D , Gamelin D R. Progress in Inorganic Chemistry, Wiley-Blackwell, United States, 2005.
55 Osterloh F E.Chemical Society Reviews, 2013, 42 (6), 2294.
56 Lei F, Sun Y, Liu K, et al.Journal of the American Chemical Society, 2014, 136 (19), 6826.
57 Long R, English N J, Prezhdo O V.Journal of the American Chemical Society, 2013, 135 (50), 18892.
58 Fang J, Liu Q, Zhang W, et al.Journal of Materials Chemistry A, 2017, 5 (34), 17817.
59 Tiuc A E, Verme an H, Gabor T, et al.Energy Procedia, 2016, 85, 559.
60 Hao A, Zhao H, Chen J Y.Composites Part B Engineering, 2013, 54 (1), 44.
61 Jayamani E, Hamdan S, Bin Bakri M K, et al.Journal of Reinforced Plastics and Composites, 2016, 35(9), 703.
62 Bansod P V, Mittal T, Mohanty A R.Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36, 376.
63 Rabbi A, Bahrambeygi H, Nasouri K, et al.Advances in Polymer Techno-logy, 2014, 33, 1.
64 Mazrouei-Sebdani Z, Khoddami A, Hadadzade H, et al. RSC Advances, 2015, 5, 12830.
65 Gao B, Zuo L, Zuo B. Fibers & Polymers, 2016, 17 (7), 1090.
66 Bahrambeygi H, Sabetzadeh N, Rabbi A. et al. Journal of Polymer Research, 2013, 20 (2), 72.
67 Kucukali Ozturk M, Kalinova K, Nergis B, et al.Textile Research Journal, 2013, 83, 2204.
68 Wu C M, Chou M H.European Polymer Journal, 2016, 82, 35.
69 Chen Y, Jiang N.Textile Research Journal, 2013, 77, 785.
70 Honarvar M G, Jeddi A A A, Tehran M A.Textile Research Journal, 2010, 80 (14), 1392.
71 Soltani P, Zerrebini M. Textile Research Journal, 2012 , 82 (9), 875.
72 Chen W H, Chen T N, Xin F X, et al.Materials and Design, 2016, 105, 386.
73 Berardi U, Iannace G. Applied Acoustics, 2017, 115, 131.
74 Hu F X, Du Z F, Zhao M M, et al. Journal of Textile Research, 2013, 34(12),45 (in Chinese).
胡凤霞, 杜兆芳, 赵淼淼, 等.纺织学报, 2013, 34(12), 45.
75 Liu X T, Yan X, Zhang H P. Textile Research Journal, 2016, 86 (7), 739.
76 Putra A, Or K H, Selamat M Z, et al. Applied Acoustics, 2018, 136, 9.
77 He L, Zhu H C, Qiu X J, et al.Acoustic Theory and Engineering Applications, Science Press, China, 2006 (in Chinese).
何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用, 科学出版社, 2006.
78 Tascan M E, Vaughn E A.Textile Research Journal, 2008, 78, 289.
79 Gao H W.Noise control technology, Wuhan University of Technology Press, China, 2009(in Chinese).
高红武. 噪声控制技术, 武汉理工大学出版社, 2009.
80 Yang S. Study of structural characteristics and acoustic properties of fiber assembiy. Ph.D. Thesis, Donghua University, China, 2011 (in Chinese).
杨树. 纤维集合体的结构特征及其吸声性能研究. 博士学位论文, 东华大学, 2011.
81 Zhao S L.Noise reduction and isolation (Volume 1), Tongji University Press, China, 1985(in Chinese).
赵松龄. 噪声的降低与隔离(上册), 同济大学出版社, 1985.
82 Kino N, Ueno T. Applied Acoustics, 2008, 69 (7), 575.
83 Soltani P, Azimian M, Wiegmann A, et al.Journal of Sound & Vibration, 2018, 426, 1.
84 Lv C L. Study on the preparation of porous sound-absorbing materials by recycling waste silicon rubber cracking slag. Master's Thesis, Jiangsu University, China, 2011 (in Chinese).
吕春丽. 废硅橡胶裂解渣再生利用制备多孔吸声材料的研究. 硕士学位论文, 江苏大学, 2011.
85 Zhang J, Chen W H, Ren S W, et al. Journal of Xi'an Jiaotong University, 2018, 52(1), 143 (in Chinese).
张俊, 陈卫华, 任树伟, 等.西安交通大学学报, 2018,52 (1),143.
86 Luan Q L, Qiu H, Cheng G. Journal of Textile Research, 2017, 38 (3), 67 (in Chinese).
栾巧丽, 邱华, 成钢. 纺织学报, 2017 , 38 (3), 67.
87 Na Y, Agnhage T, Cho G. Fibers and Polymers, 2012, 13 (10), 1348.
88 Lin W L. Study of the acoustic properties measurements for sound-absor-bing materials in the free-field. Ph.D. Thesis, Hefei University of Technology, China, 2017 (in Chinese).
林汪林. 材料吸声性能的自由场测量方法研究. 博士学位论文, 合肥工业大学, 2017.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[7] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[8] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[9] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[10] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[11] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[12] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[13] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[14] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[15] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed