Abstract: The global energy crisis and environmental pollution have long come to the foreground of our attention. As a kind of renewable energy, clean, low-cost and efficient solar energy conversion and utilization are of great significance. The solar energy can be converted into hydrogen energy which can be stored and transported through the photocatalysis, and the sea water can be desalinated by the solar energy through the photothermal effect. Both of them can help to alleviate the problems of energy shortage, environmental pollution and shortage of fresh water resources and the like. How to improve the energy conversion efficiency oflight energy conversion materials is a key issue in the field of solar energy conversion. The properties of materials depend on a number of factors, among which configuration is one of the most important factors. Therefore, excellent material configuration design has become a research hotspot in many fields such as materials, chemistry, biology, etc., to attain the requirements for applications of photocatalysis, photothermal therapy, energy conversion and storage. However, at present, the main methodology of artificial preparation are “bottom-up” chemical self-assembly and “top-down” physical processing. Both of them are unlikely to balance both cost and efficiency and obtain hoped-for configurations. In view of this, some scholars put forward the concept of “Morphology genetic materials”, which refers to the fine configuration of natural organisms (including microorganisms, animals and plants).And, they have advocated utilizing the structure of natural organisms as template to prepare materials with special structures and functions, which had provided distinctive insights and inspiration for scientific research in many fields nowadays. In recent years, solar energy conversion materials based on biological fine configuration have developed rapidly, and a large number of outstanding achievements have emerged in the field of photoelectrocatalysis and photothermal conversion.Inspired by photosynthesis in nature, solar energy can be converted to chemical energy by photocatalysis reactions. Materials with three-dimensional hierarchical structure exhibits good anisotropy, large reaction contact area and sufficient micro-nano pores, which can effectively enhance the electrical, optical and catalytic properties of semiconductor. Micro-nano porous structure materials with leaves, butterflies and others organisms as templates could improve the absorption of incident light of the catalyst, and also provide more reaction sites for water splitting. The hydrogen production performance is several times hig-her than that of materials with common configuration. At the same time, in the photo-thermal water evaporation system, the composite materials consist of metal nanoparticles and butterfly wings, lotus or other templates show excellent photothermal evaporation rate and conversion efficiency due to the rapid water absorption capacity, efficient light absorption, light enhancement ability and good thermal insulation ability of biological templates. In this paper, construction and application of solar energy efficient conversion materials based on biological fine configuration such as lea-ves, butterflies, diatoms, etc. are summarized, including their application in photocatalytic water decomposition and light-driven water evaporation. This paper could provide valuable information for the study in design and preparation of light energy conversion materials with graded micro-nano configurations.
1 https://www.bp.com/en/global/corporate/energy-econo-mics/statistical-review-of-world-energy.html. 2 Bilgen S. Renewable and Sustainable Energy Reviews, 2014, 38 ,890. 3 Kannan N, Vakeesan D. Renewable and Sustainable Energy Reviews, 2016, 62, 1092. 4 Thirugnanasambandam M, Iniyan S, Goic R. Renewable and Sustainable Energy Reviews, 2010, 14 (1), 312. 5 Kinoshita S, Yoshioka S, Kawagoe K.Proceedings of the Royal Society B- Biological Sciences, 2002, 269 (1499), 1417. 6 Yu K, Fan T, Lou S, et al.Progress in Materials Science, 2013, 58 (6), 825. 7 Stegmaier T, Linke M, Planck H.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1894), 1749. 8 Tao P, Shang W, Song C, et al.Advanced Materials (Deerfield Beach, Fla.), 2015, 27 (3), 428. 9 Schmitz H , Kahl T , Soltner H , et al. In: Bioinspiracation, Biomimetion and Bioepieication. USA, 2011, pp. 7975. 10 Georg S, Peter H, Sam S, et al.Bioinspiration & Biomimetics, 2014, 9 (3), 036012. 11 Fujishima A, Honda K.Nature, 1972, 238, 37. 12 Xiang Q, Yu J, Jaroniec M.Journal of the American Chemical Society, 2012, 134 (15), 6575. 13 Nakata K, Fujishima A.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13 (3), 169. 14 Wu B, Liu D, Mubeen S, et al.Journal of the American Chemical Society, 2016, 138 (4), 1114. 15 Boumaza S, Boudjemaa A, Bouguelia A, et al.Applied Energy, 2010, 87 (7), 2230. 16 Ouyang S, Tong H, Umezawa N, et al.Journal of the American Chemical Society, 2012, 134 (4), 1974. 17 Xu X, Liu G, Randorn C, et al.International Journal of Hydrogen Energy, 2011, 36 (21), 13501. 18 Yuan Y J, Wang F, Hu B, et al. Dalton Transactions, 2015, 44 (24), 10997. 19 Wang X, Yao X.Carbon, 2014, 77, 667. 20 Choi Y, Beak M, Yong K.Nanoscale, 2014, 6 (15), 8914. 21 Zhou H, Li X, Fan T, et al.Advanced materials (Deerfield Beach, Fla.), 2010, 22 (9), 951. 22 Li X, Fan T, Zhou H, et al. Advanced Functional Materials, 2009, 19 (1), 45. 23 Zhou H, Ding L, Fan T, et al.Applied Catalysis B: Environmental, 2014, 147, 221. 24 Tong Z, Yang D, Li Z, et al. ACS Nano, 2017, 11 (1), 1103. 25 Yan R, Chen M, Zhou H, et al.Scientific Reports, 2016, 6, 20001. 26 Liu J, Antonietti M.Energy & Environmental Science, 2013, 6 (5), 1486. 27 Liu H, Zhao Q B, Zhou H, et al. Physical Chemistry Chemical Physics, 2011, 13 (23), 10872. 28 Yin C, Zhu S, Chen Z, et al.Journal of Materials Chemistry A, 2013, 1 (29), 8367. 29 Chandrasekaran S, Nann T, Voelcker N H. Nanomaterials (Basel, Swit-zerland), 2016, 6 (8), 144. 30 Neumann O, Urban A S, Day J, et al.ACS Nano, 2013, 7 (1), 42. 31 Ghasemi H, Ni G, Marconnet A M, et al.Nature Communications, 2014, 5, 4449. 32 Wang Z, Liu Y, Tao P, et al.Small, 2014, 10 (16), 3234. 33 Liu Y, Yu S, Feng R, et al.Advanced Materials (Deerfield Beach, Fla.), 2015, 27 (17), 2768. 34 Li X, Xu W, Tang M, et al.Proceedings of the National Academy of Sciences, 2016, 113 (49), 13953. 35 Li X, Lin R, Ni G, et al.National Science Review, 2018, 5 (1), 70. 36 Liu Z, Song H, Ji D, et al.Global Challenges (Hoboken, NJ), 2017, 1 (2), 1600003. 37 Shi L, Wang Y, Zhang L, et al.Journal of Materials Chemistry A, 2017, 5 (31), 16212. 38 Zhang P, Li J, Lv L, et al.ACS Nano, 2017, 11 (5), 5087. 39 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29 (28), 1606762. 40 Wheeler T D, Stroock A D.Nature, 2008, 455, 208. 41 Jingmin L, Chong L, Zheng X, et al.Plos One, 2012, 7 (11), e50320. 42 Jiang F, Li T, Li Y, et al.Advanced Materials, 2018, 30 (1), 1703453. 43 Zhu M, Li Y, Chen G, et al.Advanced Materials, 2017, 29 (44), 1704107. 44 Chen C, Li Y, Song J, et al.Advanced Materials,2017, 29 (30), 1701756. 45 Liu H, Chen C, Chen G, et al.Advanced Energy Materials, 2018, 8 (8), 1701616. 46 Fang J, Liu J, Gu J, et al.Chemistry of Materials, 2018, 30 (18), 6217. 47 Tian J, Zhang W, Gu J, et al.Nano Energy, 2015, 17, 52. 48 Pris A D, Utturkar Y, Surman C, et al.Nature Photonics, 2012, 6, 195. 49 Miyako E, Sugino T, Okazaki T, et al.ACS Nano, 2013, 7 (10), 8736. 50 Shen T W, Tsai M H, Lai Y S, et al. Optical and Quantum Electronics, 2017, 49 (9), 295. 51 Wang P, Zhang J, He H, et al.Nanoscale, 2014, 6 (22), 13470. 52 Mocatta D, Cohen G, Schattner J, et al.Science, 2011, 332 (6025), 77. 53 Cao Y C.Science, 2011, 332 (6025), 48. 54 Bryan J D , Gamelin D R. Progress in Inorganic Chemistry, Wiley-Blackwell, United States, 2005. 55 Osterloh F E.Chemical Society Reviews, 2013, 42 (6), 2294. 56 Lei F, Sun Y, Liu K, et al.Journal of the American Chemical Society, 2014, 136 (19), 6826. 57 Long R, English N J, Prezhdo O V.Journal of the American Chemical Society, 2013, 135 (50), 18892. 58 Fang J, Liu Q, Zhang W, et al.Journal of Materials Chemistry A, 2017, 5 (34), 17817. 59 Tiuc A E, Verme an H, Gabor T, et al.Energy Procedia, 2016, 85, 559. 60 Hao A, Zhao H, Chen J Y.Composites Part B Engineering, 2013, 54 (1), 44. 61 Jayamani E, Hamdan S, Bin Bakri M K, et al.Journal of Reinforced Plastics and Composites, 2016, 35(9), 703. 62 Bansod P V, Mittal T, Mohanty A R.Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36, 376. 63 Rabbi A, Bahrambeygi H, Nasouri K, et al.Advances in Polymer Techno-logy, 2014, 33, 1. 64 Mazrouei-Sebdani Z, Khoddami A, Hadadzade H, et al. RSC Advances, 2015, 5, 12830. 65 Gao B, Zuo L, Zuo B. Fibers & Polymers, 2016, 17 (7), 1090. 66 Bahrambeygi H, Sabetzadeh N, Rabbi A. et al. Journal of Polymer Research, 2013, 20 (2), 72. 67 Kucukali Ozturk M, Kalinova K, Nergis B, et al.Textile Research Journal, 2013, 83, 2204. 68 Wu C M, Chou M H.European Polymer Journal, 2016, 82, 35. 69 Chen Y, Jiang N.Textile Research Journal, 2013, 77, 785. 70 Honarvar M G, Jeddi A A A, Tehran M A.Textile Research Journal, 2010, 80 (14), 1392. 71 Soltani P, Zerrebini M. Textile Research Journal, 2012 , 82 (9), 875. 72 Chen W H, Chen T N, Xin F X, et al.Materials and Design, 2016, 105, 386. 73 Berardi U, Iannace G. Applied Acoustics, 2017, 115, 131. 74 Hu F X, Du Z F, Zhao M M, et al. Journal of Textile Research, 2013, 34(12),45 (in Chinese). 胡凤霞, 杜兆芳, 赵淼淼, 等.纺织学报, 2013, 34(12), 45. 75 Liu X T, Yan X, Zhang H P. Textile Research Journal, 2016, 86 (7), 739. 76 Putra A, Or K H, Selamat M Z, et al. Applied Acoustics, 2018, 136, 9. 77 He L, Zhu H C, Qiu X J, et al.Acoustic Theory and Engineering Applications, Science Press, China, 2006 (in Chinese). 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用, 科学出版社, 2006. 78 Tascan M E, Vaughn E A.Textile Research Journal, 2008, 78, 289. 79 Gao H W.Noise control technology, Wuhan University of Technology Press, China, 2009(in Chinese). 高红武. 噪声控制技术, 武汉理工大学出版社, 2009. 80 Yang S. Study of structural characteristics and acoustic properties of fiber assembiy. Ph.D. Thesis, Donghua University, China, 2011 (in Chinese). 杨树. 纤维集合体的结构特征及其吸声性能研究. 博士学位论文, 东华大学, 2011. 81 Zhao S L.Noise reduction and isolation (Volume 1), Tongji University Press, China, 1985(in Chinese). 赵松龄. 噪声的降低与隔离(上册), 同济大学出版社, 1985. 82 Kino N, Ueno T. Applied Acoustics, 2008, 69 (7), 575. 83 Soltani P, Azimian M, Wiegmann A, et al.Journal of Sound & Vibration, 2018, 426, 1. 84 Lv C L. Study on the preparation of porous sound-absorbing materials by recycling waste silicon rubber cracking slag. Master's Thesis, Jiangsu University, China, 2011 (in Chinese). 吕春丽. 废硅橡胶裂解渣再生利用制备多孔吸声材料的研究. 硕士学位论文, 江苏大学, 2011. 85 Zhang J, Chen W H, Ren S W, et al. Journal of Xi'an Jiaotong University, 2018, 52(1), 143 (in Chinese). 张俊, 陈卫华, 任树伟, 等.西安交通大学学报, 2018,52 (1),143. 86 Luan Q L, Qiu H, Cheng G. Journal of Textile Research, 2017, 38 (3), 67 (in Chinese). 栾巧丽, 邱华, 成钢. 纺织学报, 2017 , 38 (3), 67. 87 Na Y, Agnhage T, Cho G. Fibers and Polymers, 2012, 13 (10), 1348. 88 Lin W L. Study of the acoustic properties measurements for sound-absor-bing materials in the free-field. Ph.D. Thesis, Hefei University of Technology, China, 2017 (in Chinese). 林汪林. 材料吸声性能的自由场测量方法研究. 博士学位论文, 合肥工业大学, 2017.