Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2159-2166    https://doi.org/10.11896/cldb.18020033
  无机非金属及其复合材料 |
微波法制备铜锌锡硫的研究进展
沈韬1,柴鲜花2,孙淑红2,朱艳2
1 昆明理工大学信息与自动化工程学院,昆明650093
2 昆明理工大学材料科学与工程学院,昆明650093
Research Progress of Cu2ZnSnS4 Prepared by Microwave Method
SHEN Tao1, CHAI Xianhua2, SUN Shuhong2, ZHU Yan2
1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093
2 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 14634KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 尽管以铜铟镓硒(CIGS)和碲化镉(CdTe)为代表的第二代薄膜太阳能电池已成功实现商业化,截至目前,以CIGS为吸收层的电池的效率已经突破23%,但由于In元素稀缺,Cd元素有剧毒,限制了该电池的大规模生产。铜锌锡硫(Cu2ZnSnS4,CZTS)是一种直接带隙半导体,因具有禁带宽度合适、光吸收系数高、组分无毒和储量丰富等优点,而成为目前太阳能电池中最具有潜力的吸收层材料之一。目前以CZTS为吸收层的太阳能电池的效率已突破12%,已接近于商业化的多晶硅太阳能电池的效率。
目前,CZTS粉体的制备方法主要为以溶剂热法、一锅法和热注入法为代表的溶液法。由于这些方法需要昂贵的仪器设备、复杂的操作顺序、较长的反应时间,且易产生杂相,严重制约着生产效率的提高。微波法也是一种溶液化学反应法,由于具有反应速度快、操作简单、效率高、加热均匀、能够减小热梯度等优势,近年在太阳能电池材料制备领域引起了广泛关注。微波法制备CZTS薄膜通常有一步成膜和两步成膜两种途径。两步成膜法先通过微波合成CTZS的粉体,再将粉体分散之后通过旋涂等方法获得CZTS的薄膜。采用这种方法得到的薄膜更加均匀、致密、稳定。然而,CZTS属于四元化合物,化学计量比的少量偏离就很容易产生其他杂相,因此如何减少和控制杂相的生成,制备纯相、形貌可控的CZTS纳米晶体并将其应用于薄膜太阳能电池显得至关重要。最近几年,除了研究CZTS对器件性能的影响外,研究者们主要从选择合适的有机溶剂、原料配比、反应时间、反应温度及表面活性剂等制备工艺方面不断尝试,并取得了丰硕的成果,在充分发挥微波法反应速度快、操作简单、效率高、加热均匀优势的同时大幅提升了器件效率。目前,以微波法合成的CZTS为吸收层材料制备的太阳能电池的转换效率已从最初的0.25%快速提高到4.92%。
本文综述了近年来微波法制备CZTS粉末和CZTS薄膜的主要方法,总结了原料配比、溶剂、反应温度、反应时间和表面活性剂等对产物形貌、结构、光学性能等的影响,并对微波法制备CZTS的发展前景进行了展望,以期为制备更高转换效率的CZTS基太阳能电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈韬
柴鲜花
孙淑红
朱艳
关键词:  微波  Cu2ZnSnS4  粉体  薄膜    
Abstract: Although second-generation thin-film solar energy represented by copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) has been successfully commercialized.Moreover, the power conversion efficiency(PCE) with CIGS as the absorption layer has exceeded 23%,but, due to the scarcity of the In element, the Cd element is highly toxic, which limits its mass production. Cu2ZnSnS4, CZTS is a kind of direct band gap semiconductor. Because of its suitable band gap width, high light absorption coefficient, non-toxic components and abundant reserves, it is the most potential absorbing layer material in solar cells. At present, PCE with CZTS as the absorption layer has exceeded 12%, and this efficiency is close to the current commercial polycrystalline silicon solar cells.
Nowadays, the main preparation method of CZTS powder is a solution reaction represented by solvothermal method, one-pot method and hot injection method. Because these methods require expensive equipment, complicated operation sequence, long reaction time, and easy generation of miscellaneous phases, the production efficiency is seriously restricted. Microwave heating is one of the solution chemical reaction methods, but this method has attracted extensive attention in the field of solar cell material preparation in recent years due to its advantages of fast reaction speed, simple operation, high efficiency, uniform heating, and reduced thermal gradient. The CZTS film prepared by microwave heating has two methods of one-step film formation and two-step film formation. The two-step film formation method refers to first synthesizing the powder of CTZS by microwave, and then dispersing the powder and then obtaining the film by spin coating or other methods. However, CZTS belongs to the quaternary compound, and the small deviation of the stoichiometric ratio makes it easy to produce other heterophases. Therefore, how to reduce and control the formation of the heterophase, and prepare the CZTS nanocrystals with pure phase and controllable morphology, and its application to thin film solar cells is crucial. In recent years, in addition to studying the impact of CZTS on device performance, researchers have been trying to select suitable organic solvents, raw material ratios, reaction times, reaction temperatures and surfactants, and have obtained many excellent results. In the full use of the microwave method, the reaction speed is fast, the operation is simple, the efficiency is high, and the heating uniformity is advantageous, and the device efficiency is greatly improved. At present, the conversion efficiency of solar cells prepared by microwave synthesis of CZTS as the absorption layer material of thin film solar cells has rapidly increased from the initial 0.25% to 4.92%.
In this paper, the main methods of preparing CZTS powder and CZTS film by microwave method in recent years are reviewed. The effects of raw material ratio, solvent, reaction temperature, reaction time and surfactant on the morphology, structure and optical properties of the product are summarized. The development prospect of CZTS preparation is prospected, in order to provide reference for the preparation of CZTS-based solar cells with higher conversion efficiency.
Key words:  microwave    Cu2ZnSnS4    particles    thin film
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  O649  
  O649.4  
  TM914.4+2  
基金资助: 国家自然科学基金(61764010;61671225);云南省重点基金(2018FA034)
作者简介:  沈韬, 昆明理工大学信息工程与自动化学院副院长,教授,博士生导师。中国材料学会青年工作委员会理事、副秘书长。云南省高层次海外引进人才、云南省中青年学术技术带头人后备人才。主持国家自然科学基金项目2项、云南省应用基础研究项目及企业合作横向科研项目10余项,参与国家重大科学仪器设备开发专项、973项目2项。发表SCI & EI收录论文40余篇,出版学术专著2本,授权发明专利5项,登记软件著作权14项。获云南省高等教育教学成果奖一等奖1项。
孙淑红,2000年7月毕业于昆明理工大学,获得工学学士学位。2015年7月在昆明理工大学取得博士学位。现为昆明理工大学材料科学与工程学院硕士研究生导师。目前主要研究领域为有CZTS薄膜太阳能电池材料与器件。
引用本文:    
沈韬, 柴鲜花, 孙淑红, 朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
SHEN Tao, CHAI Xianhua, SUN Shuhong, ZHU Yan. Research Progress of Cu2ZnSnS4 Prepared by Microwave Method. Materials Reports, 2019, 33(13): 2159-2166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020033  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2159
1 Qing H M, Zhu Y, Hu Y M, et al. Materials Letters, 2016, 176, 177.2 Talapin D V, Lee J S, Kovalenko M V, et al. Chemical Reviews, 2010, 110, 389.3 Habas S E, Platt H A S, Hest M F A M V, et al. Chemical Reviews, 2010, 110, 6571.4 Jackson P, Hariskos D, Lotter E, et al. Progress in Photovoltaics: Research and Applications, 2011, 19, 894.5 Guchhait A, Dewi H A, Leow S W, et al. ACS Energy Letters, 2017, 2, 807.6 Li Z G, Lui A L K, Lam K H, et al. Inorganic Chemistry, 2014, 53, 10874.7 Li M, Zhou W H, Guo J, et al. The Journal of Physical Chemistry C, 2012, 116, 26507.8 Katagiri H, Jimbo K, Maw W S, et al. Thin Solid Films, 2009, 517, 2455.9 Steinhagen C, Panthani M G, Akhavan V, et al. Journal of the American Chemical Society, 2009, 131, 12554.10 Shi C, Shi G, Chen Z, et al. Materials Letters, 2012, 73, 89.11 Moholkar A V, Shinde S S, Babar A R, et al. Solar Energy, 2011, 85, 1354.12 Tao J, Liu J, Chen L, et al. Green Chemistry, 2016, 18, 550.13 Li J, Wang H, Luo M, et al. Solar Energy Materials & Solar Cells, 2016, 149, 242.14 Zhou X, Meng W, Dong C, et al. RSC Advances, 2015, 5, 90217.15 Zhou Y L, Zhou W H, Li M, et al. The Journal of Physical Chemistry C, 2011, 115, 19632.16 Liu W, Guo B, Mak C, et al. Thin Solid Films, 2013, 535, 39.17 Wu S H, Shih C F, Pan H C, et al. Thin Solid Films, 2013, 544, 19.18 Tanaka K, Moritake N, Uchiki H. Solar Energy Materials & Solar Cells, 2007, 91, 1199.19 Park H, Bae B S, Hwang Y H. Journal of Sol-Gel Science and Technology, 2013, 65, 23.20 Chen D, Zhao Y, Chen Y, et al. ACS Applied Materials Interfaces, 2015, 7, 24403.21 Xia D, Zheng Y, Lei P, et al. Physics Procedia, 2013, 48, 228.22 Shin S W, Han J H, Park C Y, et al. Journal of Alloys and Compounds, 2012, 516, 96.23 Wang W, Shen H, He X. Materials Research Bulletin, 2013, 48, 3140.24 Knutson T R, Hanson P J, Aydilb E S, et al. Chem Commun (Communication), 2014, 50, 5902.25 Long F, Mo S Y, Zeng Y, et al. International Journal of Photoenergy, DOI:10.1155/2014/618789.26 Washington A L, Strouse G F. Chemistry of Materials, 2009, 21, 2770.27 Sun C, Richard D W, Long G, et al. International Journal of Chemical Engineering, DOI:10.1155/2011/545234.28 Mitzi D B, Gunawan O, Todorov T K, et al. Solar Energy Materials and Solar Cells, 2011, 95, 1421.29 Yu K, Carter E A. Chemistry of Materials, 2015, 27, 2920.30 Zhou J, You L, Li S, et al. Materials Letters, 2012, 81, 248.31 Nguyen D C, Ito S, Dung D V A. Journal of Alloys and Compounds, 2015, 632, 676.32 Ma G, Minegishi T, Yokoyama D, et al. Chemical Physics Letters, 2011, 501, 619.33 Qiao Qing. Synthesis and photoelectic properties study of Cu2ZnSn(S,Se)4 thin films. Master's Thesis,Henan University, China, 2015(in Chinese).乔青. 液相法制备铜锌锡硫硒薄膜及其光电性能研究.硕士学位论文, 河南大学, 2015.34 Amaya I, Correa R . Revista De Ingeniería, 2016, 38, 33.35 Lu Kai. Agricultural Science & Technology and Equipment, 2007(1), 61 (in Chinese).卢凯.农业科技与装备, 2007(1), 61.36 Xia Xiang, Chen Zuxing, Tan Jie. Mining and Metallurgy in Hainan, 2001(2), 47 (in Chinese).夏湘, 陈祖兴, 谭杰. 海南矿冶, 2001(2), 47.37 Yang Jin. Construction Machinery & Maintenance, 2006(4), 89 (in Chinese).杨瑾. 工程机械与维修, 2006(4), 89.38 Bo Jiajun, Cheng Xinyao. Vacuum Electronics, 1988(1), 58 (in Chinese).鲍家俊, 程信尧. 真空电子技术, 1988(1), 58.39 Tian Z Q, Jiang S P, Liang Y M, et al. The Journal of Physical Chemistry B, 2006, 110, 5343.40 Pallavkar S, Kim T H, Lin J, et al. Industrial & Engineering Chemistry Research, 2010, 49, 8461.41 Wang K C, Chen P, Tseng C M. Crystengcomm, 2013, 15, 9863.42 Li Xinhao. A study on the nature of microwave accelerated organic reactions. Master's Thesis, Beijing University of Chemical Technology, China, 2016(in Chinese).李昕皓. 微波加速有机反应的本质研究.硕士学位论文, 北京化工大学, 2016.43 Kumar R S, Hong C H, Kim M D. Advanced Powder Technology, 2014, 25, 1554.44 Lin Y H, Das S, Yang C Y, et al. Journal of Alloys and Compounds, 2015, 632, 354.45 Gong Z, Han Q, Li J, et al. Journal of Alloys and Compounds, 2016, 663, 617.46 Ghediya P R, Chaudhuri T K. Journal of Physics D Applied Physics, 2015 48,45510947 Flynn B, Wang W, Chang C H, et al. Physica Status Solidi (a), 2012, 209, 2186.48 Saravana Kumar R, Ryu B D, Chandramohan S, et al. Materials Letters, 2012, 86, 174.49 Shin S W, Han J H, Park C Y, et al. Journal of Alloys and Compounds, 2012, 541, 192.50 Sarswat P K, Free M L. Journal of Crystal Growth, 2013, 372, 87.51 Chen W C, Tunuguntla V, Chiu M H, et al. Solar Energy Materials and Solar Cells, 2017, 161, 416.52 Madiraju V A, Taneja K, Kumar M, et al. Journal of Materials Science: Materials in Electronics, 2015, 27, 3152.53 Wang W, Shen H, He X, et al. Journal of Nanoparticle Research, 2014, 16,2437.54 Kandare S P, Dhole S D, Bhoraskar V N, et al. In: The Dae Solid State Physics Symposium. AIP Publishing LLC, 2016, pp.174.55 Patro B, Vijaylakshmi S, Sharma P. In: The Conference Record of the 2015 on Dae Solid State Physics Symposium. AIP Publishing LLC, 2016, pp.28.56 Pinto A H, Shin S W, Isaac E, et al. Journal of Materials Chemistry 2017, 5, 23179.57 Tao W, Wei A, Zhao Y, et al. Journal of Materials Science: Materials in Electronics, 2016, 28, 3407.58 Wang W, Shen H, Jiang F, et al. Journal of Materials Science: Materials in Electronics, 2012, 24, 1813.59 Ansari M Z,Khare N. In: the International Conference on Condensed Matter & Applied Physics. AIP Publishing LLC, 2016, pp. 1.60 Wang W, Shen H, Yao H, et al. Journal of Materials Science: Materials in Electronics, 2015, 26, 1449.61 Yang X, Xu J, Yang Q, et al. Journal of Nanoparticle Research, 2012, 14, 1.62 Zhao Y, Tao W, Chen X, et al. Journal of Materials Science: Materials in Electronics, 2015, 26, 5645.63 Yan X, Michael E, Komarneni S, et al. Ceramics International, 2014, 40, 1985.64 Long F, Chi S, He J, et al. Journal of Solid State Chemistry, 2015, 229, 228.65 Yang H, Su X, Tang A. Materials Research Bulletin, 2007, 42, 1357.66 Zhao Y, Tao W, Liu J, et al. Materials Letters, 2015, 148, 63.67 Li Q, Weia A X, Tao W K, et al. Chalcogenide Letters, 2017, 14, 465.68 Ghediya P R, Chaudhuri T K. Journal of Materials Science: Materials in Electronics, 2014, 26, 1908.69 Martini T, Chubilleau C, Poncelet O, et al. Solar Energy Materials & Solar Cells, 2016, 144, 657.70 Wang W, Shen H, Wong L H, et al. RSC Advances, 2016, 6, 54049.71 Zhou Z, Zhang P, Lin Y, et al. Nanoscale Research Letters, 2014, 9, 477.72 Guo Q, Hillhouse H W, Agrawal R. Journal of the American Chemical Society, 2009, 131, 11672.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[3] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[4] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[5] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[8] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[9] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[10] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[11] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[12] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[13] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[14] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[15] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed