Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2151-2158    https://doi.org/10.11896/cldb.18050163
  无机非金属及其复合材料 |
钡镧钛系高介低损耗微波介质陶瓷研究进展
王耿1,2,傅邱云1,张芦1,施浩1,田帆1
1 华中科技大学光学与电子信息学院,教育部敏感陶瓷工程中心,武汉 430074
2 湖北科技学院电子与信息工程学院,咸宁 437100
Research Progress of BaO-Ln2O3-TiO2 System Microwave Dielectric Ceramics with High Permittivity and Low Loss
WANG Geng1,2,FU Qiuyun1,ZHANG Lu1,SHI Hao1,TIAN Fan1
1 School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074
2 School of Electronic Information and Engineering, Hubei University of Science and Technology, Xianning 437100
下载:  全 文 ( PDF ) ( 3559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波介质陶瓷是指用于微波频段电路中作为介质材料并能实现一种或几种功能的陶瓷,是近几十年来发展起来的一类新型电子陶瓷材料,主要用于制作片式天线、双工器、稳频振荡器、微波电容器、滤波器、谐振器等微波元器件。这些元器件可广泛应用于4G/5G移动通信系统、全球卫星定位系统、卫星通信系统、无线互联网、军事雷达等领域。随着5G移动通信系统产业的快速发展,作为通信设备中的重要器件,微波元器件特别是滤波器、谐振器受到研发人员广泛的关注。为了进一步提升微波元器件的性能、缩小微波元器件的尺寸以及降低制造成本,对微波介电材料的要求主要有以下几点: (1)较高的介电常数(εr); (2)尽可能高的品质因数(Qf);(3)近零的谐振频率温度系数(TCF);(4)所选材料价格便宜且无毒环保。
从介电常数的角度划分,高介电常数微波介质陶瓷通常是指介电常数在70及70以上的微波介电材料,主要材料体系通常包括钡镧钛体系、ABO3型钙钛矿结构体系、钙锂镧钛体系、铋基体系、锂基体系及铅基钙钛矿体系等。目前在高介电常数微波介电材料体系中,关于钡镧钛体系的研究比较多,它属于类钙钛矿钨青铜结构,结构单元中具有形状各异、大小不一的几类空隙,能够填充不同价态、不同半径的离子,不同离子的填充会引起结构发生对应的变化,从而使钡镧钛体系微波介电材料具备性能各异的微波介电性能。众多研究人员针对这一特性,将各种不同价态、不同半径的离子掺入该材料体系中,期望将离子填充到晶体结构中的某个空隙,从而获得更好的微波介电性能。
钡镧钛系微波介质陶瓷具有温度稳定性好、介电常数高、损耗低等优点,是移动通信领域所使用的主要介质材料,随着5G通信技术的快速发展,其相关的研究具有非常重要的理论意义和应用价值,也是微波介电材料的研究热点之一。
本文综合介绍了钡镧钛系微波介质陶瓷的晶体结构以及固溶极限,从A位置换、B位置换、A/B位协同置换、复合改性、抗还原研究及低温烧结几个方面综述了近年来钡镧钛系微波介质陶瓷的研究进展,并探讨了目前其研究中所存在的主要问题及未来的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王耿
傅邱云
张芦
施浩
田帆
关键词:  钡镧钛  微波介质陶瓷  介电性能  改性    
Abstract: Microwave dielectric ceramics is a kind of functional ceramics which can be used in microwave frequency circuits as dielectric materials. It is also a new type of electronic ceramic materials developed in recent decades, and mainly used in microwave devices such as antennas duple-xers, frequency stabilized oscillators, microwave capacitors, filters and resonators. These components have a wide range of applications in many fields such as 4G/5G mobile communication systems, global satellite positioning systems, satellite communication systems, wireless Internet and military radar. With the rapid development of the 5G mobile communication system industry, microwave components especially filters and resonators, acting as important devices in communication equipment, have received extensive attention from researchers all over the world. In order to make a further improvement in the performance of microwave components, decrease the size of microwave components and reduce manufactu-ring costs, the requirements for microwave dielectric materials are shown as follows: (1) high dielectric constant(εr); (2) high quality factor(Qf); (3) near zero temperature coefficient of resonance frequency(TCF); (4) cheap, non-toxic and environmentally friendly raw materials.
From the perspective of dielectric constant, high dielectric constant microwave dielectric ceramics generally refer to the materials with dielectric constants above 70. The main material systems of high dielectric constant microwave dielectric ceramics usually include barium lanthanum titanium system(BaO-Ln2O3-TiO2), ABO3 perovskite structure system, calcium lithium lanthanum titanium system, bismuth based system, lithium based system and lead based perovskite system. In the high dielectric constant microwave dielectric material system studied in recent years, the barium lanthanum titanium system has got the most attention. This system belongs to the perovskite-like tungsten bronze structure, and there are several types of voids in the structural unit with different shapes and sizes, which can be filled by ions with different valence states and radii. The filling of different ions would cause corresponding changes in the structure, and would influence the microwave dielectric properties at the same time. Based on the property above, many researchers have incorporated ions of different valences and radii into the Ba-Ln-Ti system, and desired to fill the ions into a certain space in the crystal structure, in order to obtain better microwave dielectric properties.
BaO-Ln2O3-TiO2 system microwave dielectric ceramics is widely used in mobile communication for its good temperature stability, high permitti-vity and low loss. With the rapid development of 5G communication, the research on this system exhibits great theoretical significance and application value, therefore becoming one of the hottest research topics in microwave dielectric area.
This article first introduces the crystal structure and solid solubility limit of BaO-Ln2O3-TiO2 ceramics, and then provides an overview of the progress on BaO-Ln2O3-TiO2 system in recent years from several aspects including A-site substitution, B-site substitution, A/B-site collaborative substitution, combined modification, anti-reduction and low-temperature sintering. Current existed problems and future research priorities are also discussed in the end of the article.
Key words:  BaO-Ln2O3-TiO2    microwave dielectric ceramics    dielectric properties    modification
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TQ174  
基金资助: 国家重点研发计划(2017YFB0406301)
作者简介:  王耿,2012年6月毕业于湖北工业大学,获得工学硕士学位。现为华中科技大学光学与电子信息学院博士研究生,在傅邱云教授的指导下进行研究。目前主要研究领域为高性能微波介质及滤波器件。
傅邱云,华中科技大学光学与电子信息学院教授、博士研究生导师,华中科技大学“华中学者”特聘教授,教育部敏感陶瓷工程研究中心主任。主持并完成国家自然科学基金面上项目、国家863目标导向项目等国家与省部级项目10余项,与企业合作开发项目20余项。授权中国发明专利20余项、美国发明专利2项;在Advanced Materials、ACS Applied Materials & Interfaces、Applied Physics Letter、Journal of the European Ceramics Society、Journal of the American Ceramics Society、Sensors and Actuators B等发表SCI论文50余篇;国内外会议大会报告与特邀报告多次;担任中国电子学会元件分会委员、青年科学家俱乐部委员、中国硅酸盐学会特种陶瓷分会理事等多种学术兼职。主要研究方向为信息存储器件、薄膜传感器、片式集成元件及LTCC无源集成技术。
引用本文:    
王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
WANG Geng, FU Qiuyun, ZHANG Lu, SHI Hao, TIAN Fan. Research Progress of BaO-Ln2O3-TiO2 System Microwave Dielectric Ceramics with High Permittivity and Low Loss. Materials Reports, 2019, 33(13): 2151-2158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050163  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2151
1 Sebastian M T.Dielectric materials for wireless communication, Elsevier, Netherlands, 2010.2 Sebastian M T, Jantunen H.International Materials Reviews, 2008, 53(2), 57.3 Reaney I M, Iddles D.Journal of the American Ceramic Society, 2006, 89(7), 2063.4 Sebastian M T, Ubic R, Jantunen H.International Materials Reviews, 2015, 60(7), 392.5 Ohsato H.Ceramics International, 2012, 38, S141.6 Hu J, Lu X P, Zhang T Y, et al. Materials Review, 2017, 31(S2), 107 (in Chinese).胡杰, 吕学鹏, 张天宇, 等.材料导报, 2017, 31(S2), 107.7 Andrews J G, Buzzi S, Choi W, et al.IEEE Journal on Selected Areas in Communications, 2014, 32(6), 1065.8 Wong V W, Schober R, Ng D W, et al.Key Technologies for 5G Wireless Systems, Cambridge University Press, UK, 2017.9 Sebastian M T, Ubic R, Jantunen H.Microwave materials and applications, John Wiley & Sons, USA, 2017.10 Xiong Z, Tang B, Fang Z, et al.Journal of Alloys and Compounds, 2017, 723, 580.11 Xiong Z, Tang B, Yang C, et al.Journal of Alloys and Compounds, 2018, 740, 492.12 Ullah B, Lei W, Song X Q, et al.Journal of the European Ceramic Society, 2017, 37(9), 3051.13 Li Z, Yan Y, Zhang M, et al.Ceramics International, 2017, 43(2), 2899.14 Gu Y, Li C, Huang J, et al.Journal of the European Ceramic Society, 2017, 37(15), 4673.15 Ning F, Gan L, Yuan S, et al.Journal of Alloys and Compounds, 2017, 729, 742.16 Zhou D, Guo D, Li W B, et al.Journal of Materials Chemistry C, 2016, 4(23), 5357.17 Zhou D, Pang L X, Wang D W, et al.Journal of Materials Chemistry C, 2017, 5(38), 10094.18 Long Y, Wang Y, Wu W, et al.Journal of the American Ceramic Society, 2009, 92(11), 2630.19 Sun H, Li E, Yang H, et al.Materials Letters, 2018, 210, 275.20 Kucheiko S, Choi J W, Kim H J, et al.Journal of the American Ceramic Society, 1997, 80(11), 2937.21 Yoon K H, Kim E S, Jeon J S.Journal of the European Ceramic Society, 2003, 23(14), 2391.22 Bolton R L. Temperature compensating ceramic capacitors in the system baria-rare-earth-oxide-titania. Ph.D. Thesis. University of Illinois at Urbana-Champaign,USA,1968.23 Matveeva R G, Varfolomeev M B, Il'Yushchenko L S.Zhurnal Neorganicheskoj Khimii, 1984, 29(1), 31.24 Ohsato H, Mizuta M, Ikoma T, et al.Journal of the Ceramic Society of Japan, 1998, 106(1230), 178.25 Ohsato H, Imaeda M.Materials Chemistry and Physics, 2003, 79(2-3),208.26 kapin S, Kolar D, Suvorov D, et al. Journal of Materials Research, 1998, 13(5), 1327.27 Fukuda K, Kitoh R, Awai I.Journal of Materials Research, 1995, 10(2), 312.28 Ohsato H, Ohhashi T, Nishigaki S, et al.Japanese Journal of Applied Physics, 1993, 32(9S), 4323.29 Negas T, Davies P K.Cheminform, 1996, 27(5), no.30 Cruickshank K M, Jing X, Wood G, et al.Journal of the American Cera-mic Society, 1996, 79(6), 1605.31 Ubic R, Reaney I M, Lee W E.International Materials Reviews, 1998, 43(5), 205.32 Zhang L, Chen X M, Qin N, et al.Journal of the European Ceramic Society, 2007, 27(8-9), 3011.33 Zhong L, Zhu X L, Chen X M, et al.Ceramics International, 2011, 37(8), 3575.34 Ichinose N, Amada H.Journal of the European Ceramic Society, 2001, 21(15), 2751.35 Li Y, Chen X M.Journal of the European Ceramic Society, 2002, 22(5), 715.36 Qin N, Chen X M.Materials Science and Engineering: B, 2004, 111(1), 90.37 Qin N, Chen X M.Key Engineering Materials, 2005, 280, 57.38 Zhang X, Zhang L, Zhang J, et al.Journal of Materials Science, 2015, 50(3), 1141.39 Huang X, Liu X, Liu F, et al.Journal of Advanced Ceramics, 2017, 6(1), 50.40 Wang X, Fu R, Xu Y.Journal of Materials Science: Materials in Electro-nics, 2016, 27(11), 11137.41 Wang X, Luo J, Guan H, et al.Journal of Materials Science: Materials in Electronics, 2017, 28(14), 10338.42 Gao X F, Qiu T.Journal of Rare Earths, 2010, 28(3), 411.43 Chen H, Tang B, Gao A, et al.Journal of Materials Science: Materials in Electronics, 2015, 26(1), 405.44 Chen H, Tang B, Duan S, et al.Journal of Electronic Materials, 2015, 44(4), 1081.45 Huang B, Wang Z, Chen T, et al.Journal of Materials Science Materials in Electronics, 2015, 26(5), 3375.46 Guo X, Tang B, Liu J, et al.Journal of Alloys and Compounds, 2015, 646, 512.47 Chen H, Tang B, Guo X, et al.International Journal of Applied Ceramic Technology, 2016, 12(S3), E170.48 Chen J S, Chen G H, Kang X L, et al.Journal of Materials Science Materials in Electronics, 2016, 27(8), 8234.49 Xiang M C, Yi L.Journal of the American Ceramic Society, 2002, 85(3), 579.50 Gao X F, Qiu T.Journal of Alloys & Compounds, 2010, 502(2), 333.51 Guo X, Tang B, Chen H, et al.Journal of Materials Science Materials in Electronics, 2015, 26(8), 6182.52 Chen H, Tang B, Xiong Z, et al.Applied Physics A, 2015, 121(1), 283.53 Chen H, Xiong Z, Yuan Y, et al.Journal of Materials Science Materials in Electronics, 2016, 27(10), 10951.54 Chen H, Tang B, Guo X, et al.Journal of Electronic Materials, 2017, 46, 1.55 Ohsato H, Komura A, Takagi Y, et al.Japanese Journal of Applied Phy-sics, 1998, 37, 5357.56 Wu Y J, Chen X M.Journal of the European Ceramic Society, 1999, 19(6-7), 1123.57 Liang B L, Zheng X H, Ni W Q, et al. Journal of the Chinese Ceramic Society, 2006, 34(12), 17 (in Chinese).梁炳亮, 郑兴华, 倪维庆, 等. 硅酸盐学报, 2006, 34(12), 17.58 Zheng X H, Liang B L, Tang D P, et al.Journal of the Ceramic Society of Japan, 2009, 117(1371), 1254.59 Lu W Z, Wang X C, Zhu J H, et al. Ferroelectrics, 2009, 387(1), 137.60 Zhu J H, Lu W Z, Lei W, et al. Ceramics International, 2009, 35(2), 855.61 Zhu J H, Kipkoech E R, Lu W Z. Journal of the European Ceramic Society, 2006, 26(10-11), 2027.62 Huang B, Wang Z, Chen T, et al.Journal of Materials Science Materials in Electronics, 2014, 25(12), 5264.63 Chang G, Zhou X H, Zhang S R, et al.Journal of Materials Science Materials in Electronics, 2014, 25(10), 4439.64 Xu Y, Fu R, Agathopoulos S, et al.Ceramics International, 2016, 42(13), 14573.65 Wang X, Fu R, Xu Y.Journal of Materials Science: Materials in Electro-nics, 2017, 28(5), 4328.66 Yao X, Lin H, Chen W, et al.Ceramics International, 2012, 38(4), 3011.67 Yao X, Lin H, Zhao X, et al.Ceramics International, 2012, 38(8), 6723.68 Huang B, Yan Z, Lu X, et al.Ceramics International, 2016, 42(9), 10758.69 Tao J, Mu M, Wang X, et al.Journal of Materials Science Materials in Electronics, 2017, 28(22), 16888.70 Tao J, Mu M, Wang X, et al.Journal of Materials Science Materials in Electronics, 2018, 29(2), 1392.71 Tang B, Xiang Q, Fang Z, et al.Journal of Materials Science: Materials in Electronics, 2018, 29(1), 535.72 Lim J B, Cho K H, Nahm S, et al.Materials Research Bulletin, 2006, 41(10), 1868.73 Santha N, Sebastian M T, George V, et al.Materials Chemistry & Physics, 2006, 100(2), 423.74 Pang L X, Wang H, Zhou D, et al.Materials Chemistry & Physics, 2010, 123(2-3), 727.75 Zeng Y, Wang H, Zhou H.Journal of Materials Research, 2010, 25(12), 2380.76 Yang W, Zuo R, Zhou Y, et al.Journal of Materials Science, 2011, 46(6), 1932.77 Shih Y T, Jean J H.Journal of the American Ceramic Society, 2013, 96(12), 3849.78 Zhou X, Zhang Y, Chang G, et al.Journal of Materials Science Materials in Electronics, 2016, 27(3), 2783.79 Li E, Chen Y, Xiong J, et al.Journal of Materials Science Materials in Electronics, 2016, 27(8), 8428.80 Long M, Tang B, Zhang S, et al. Materials Letters, 2012, 68, 486.81 Chen H, Zhang Z, Xiong Z, et al.Journal of the American Ceramic Society, 2017, 100(9), 4058.82 Pullar R C, Penn S J, Wang X, et al.Journal of the European Ceramic Society, 2009, 29(3), 419.83 Xia H T, Kuang X J, Wang C H, et al. Acta Physico-Chimica Sinica, 2011, 27(8), 2009.
[1] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[2] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[5] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[6] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[7] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[8] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[9] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[10] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[11] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[12] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[13] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[14] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[15] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed