Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 357-362    https://doi.org/10.11896/cldb.201902029
  高分子与聚合物基复合材料 |
微波水热法制备磺酸盐型Gemini表面活性剂及其表征
吕斌1,2, 余亚金1,2, 高党鸽1,2, 马建中1,2, 苏姣姣1
1 陕西科技大学轻工科学与工程学院,西安 710021
2 轻化工程国家级教学示范中心,西安 710021
Microwave Hydrothermal Synthesis of Sulfonate Gemini Surfactant and Its
Characterization
LYU Bin1,2, YU Yajin1,2, GAO Dangge1,2, MA Jianzhong1,2, SU Jiaojiao1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021
2 National Educational Reform Experimental Demonstration Center, Xi’an 710021
下载:  全 文 ( PDF ) ( 2135KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以十二酸单乙醇酰胺和马来酸单酯为原料,采用微波水热法制备了十二酸单乙醇酰胺马来酸双酯;然后用NaHSO3对其进行磺化,制备了十二酸单乙醇酰胺磺基琥珀酸双酯;最后通过-CH2ClCOOH进行叔胺化,获得了磺酸盐型Gemini表面活性剂。采用单因素实验法分别对各步进行了优化,获得了最优的合成工艺。采用FT-IR、1H NMR对磺酸盐型Gemini表面活性剂的结构进行了表征,对其表面张力、润湿性、乳化力等性能进行了检测。结果表明,制得的磺酸盐型Gemini表面活性剂的临界胶束浓度(CMC)为1.61×10-4 mol/L,表面张力(rCMC)为36.7 mN/m,润湿时间为8.87 s,乳化时间为415 s。与传统合成方法相比,微波水热法合成的磺酸盐型Gemini表面活性剂具有反应时间短、操作简单等优点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕斌
余亚金
高党鸽
马建中
苏姣姣
关键词:  微波水热法  磺化  叔胺化  Gemini表面活性剂    
Abstract: Dodecanoic monoethanolamide maleate diester was firstly synthesized by microwave hydrothermal method with dodecanoic acid monoethanolamide and maleic acid monoester as raw materials. Then, dicarboxylic acid monoethanolamide sulfosuccinic diester was obtained after sulfonation treatment by NaHSO3. Finally, Gemini surfactant was achieved via tertiary amination of-CH2ClCOOH. Single factor experiments were conducted for the sake of optimizing synthetic process parameters. Moreover, FT-IR and 1H NMR were employed to characterized the structure of the sulfonate Gemini surfactant. The surface tension, wettability and emulsifying properties of the surfactant were also investigated. The results revealed that the prepared sulfonate Gemini surfactant was endowed with a critical micelle concentration of 1.61×10-4 mol/L, γCMC of 36.7 mN/m, wetting time of 8.87 s, and emulsification time of 415 s. Compared with the traditional methods, microwave hydrothermal synthesis of sulfo-nate Gemini surfactant featured by short reaction time and Simple operation.
Key words:  microwave hydrothermal method    sulfonation    tertiary amination    Gemini surfactants
                    发布日期:  2019-01-31
ZTFLH:  TS529.1  
基金资助: 国家自然科学基金青年基金(21406135);陕西省青年科技新星项目(2016KJXX-02)
作者简介:  吕斌,副教授,硕导,陕西省青年科技新星,现任陕西科技大学轻工科学与工程学院副院长,科锐新材料研究所所长,中国轻工业皮革清洁生产重点实验副主任,兼任中国皮革协会科技委员会常务委员、陕西省科技计划项目评审专家。xianyanglvbin@163.com
引用本文:    
吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
LYU Bin, YU Yajin, GAO Dangge, MA Jianzhong, SU Jiaojiao. Microwave Hydrothermal Synthesis of Sulfonate Gemini Surfactant and Its
Characterization. Materials Reports, 2019, 33(2): 357-362.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902029  或          http://www.mater-rep.com/CN/Y2019/V33/I2/357
1 Hou L. Synthesis and properties of dissymmetry nonionic-anionic Gemini surfactants. Master’s thesis, North University of China, China,2014(in Chinese).
侯璐.阴离子-非离子型不对称Gemini表面活性剂的合成与性能研究.硕士学位论文,中北大学,2014.
2 Lai L, Mei P, Wu X M, et al. Colloid & Polymer Science,2014,292(11),2821.
3 Ma J, Yun C, Liu L. Journal of the Society of Leather Technologists & Chemists,2005,89(2),80.
4 Naveen Kumar, Rashmi Tyagi. Journal of Dispersion Science & Techno-logy,2014,35(2),205.
5 Ma J Z. Synthetic principles and application technology of leather chemicals, China Light Industry Press,China,2009(in Chinese).
马建中.皮革化学品的合成原理与应用技术.中国轻工业出版社,2009.
6 Bin L, Wang H D, Jian-Zhong M A, et al. China Surfactant Detergent & Cosmetics,2014,44(6),343.
7 Mei P, Lai L, Zheng C Y. Synthesis and properties of Gemini surfactants, Chemical Industry Press, China,2014(in Chinese)
梅平,赖璐,郑延成.Gemini表面活性剂的合成及性能研究,化学工业出版社,2014.
8 Mei P, Lai L, Chen W, et al. Chemistry & Bioengineering,2009,26(2),1(in Chinese).
梅平,赖璐,陈武,等.化学与生物工程,2009,26(2),1.
9 Ge L. Chemical Enterprise Management,2017(20),127(in Chinese)
葛蕾.化工管理,2017(20),127.
10 Zheng M, Mo L, Qin R, et al. In:2016 International Conference on Materials Science, Resource and Environmental Engineering. Xi’an,2017,pp.030008.
11 Wang P, Shen Y. Dyeing & Finishing,2015(22),52(in Chinese).
汪萍,沈勇.印染,2015(22),52.
12 Ye J, Hua P, Fang L. Guangdong Chemical Industry,2011,38(5),7(in Chinese).
叶俊,华平,方略韬.广东化工,2011,38(5),7.
13 Hu X, Hou M, Hu W. Chemical Engineering of Oil & Gas,2011,40(5),494.
14 Zhou M, Zhao J, Liu J, et al. Chinese Journal of Applied Chemistry,2011,28(8),15023.
15 Zhang Q, Tian M, Han Y, et al. Journal of Colloid & Interface Science,2011,362(2),406.
16 Jia J Y. Synthesis and properties of succinate sulfonate Gemini surfactant. Master’s thesis, Liaoning Normal University,China,2012(in Chinese).
贾金英.琥珀酸酯磺酸盐型Gemini表面活性剂的合成及性能研究,硕士学位论文,辽宁师范大学,2012.
17 Zhou M, Xia L, He Y, et al. Journal of Surfactants & Detergents,2015,18(2),303.
18 Wei S I, Huang M Y, Ding S Q, et al. Bulletin of the Chinese Ceramic Society,2013,32(5),868.
19 Guo N N. Chemical Research & Application,2017,29(4),441(in Chinese).
郭乃妮.化学研究与应用,2017,29(4),441.
20 Zheng X. Inorganic Chemicals Industry,2009,41(8),9(in Chinese).
郑兴芳.无机盐工业,2009,41(8),9.
21 吕斌,王泓棣,马建中,等.中国,CN106117090,2016.
22 Chen H, Zhu B. Journal of Surfactants & Detergents,2014,17(5),937.
[1] 刘誉贵, 马育, 刘攀. 氨化与磺化改性橡胶混凝土机理及强度研究[J]. 材料导报, 2018, 32(18): 3142-3145.
[2] 丁杰, 赵春霞, 吴凯, 易秀丽, 郑治. 聚乙烯醇/磺化聚醚醚酮/对氨基二苯胺电活性复合膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(14): 2481-2485.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed