Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3142-3145    https://doi.org/10.11896/j.issn.1005-023X.2018.18.008
  无机非金属及其复合材料 |
氨化与磺化改性橡胶混凝土机理及强度研究
刘誉贵1,2, 马育1, 刘攀2
1 重庆交通大学材料科学与工程学院,重庆 400074;
2 重庆市智翔铺道技术工程有限公司,重庆 400076
Study on Mechanism and Strength of Ammoniated Modified Rubber Concrete and Sulfonated Modified Rubber Concrete
LIU Yugui1,2, MA Yu1, LIU Pan2
1 School of Materials Science & Engineering, Chongqing Jiaotong University, Chongqing 400074;
2 Chongqing Zhixiang Paving Technology Engineering Co., Ltd., Chongqing 400076
下载:  全 文 ( PDF ) ( 2163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善橡胶混凝土的强度,本工作选用尿素和NaHSO3两种改性剂对橡胶颗粒进行氨化与磺化改性。借助傅里叶红外光谱仪验证引入的极性亲水基团,利用水接触角试验仪分析改性橡胶的亲水性能,通过粘接强度试验和抗压强度试验研究改性橡胶对橡胶混凝土强度的提升效果,用扫描电子显微镜(SEM)表征橡胶混凝土的微观破坏形貌。结果表明:氨化改性在橡胶颗粒表面引入羰基和氨基等,磺化改性在橡胶颗粒表面引入羟基和磺酸基等;与普通组相比,氨化与磺化改性后,改性橡胶-水接触角分别降低31°、35°,改性橡胶与水泥净浆的粘接强度分别提升44%、53%,改性橡胶混凝土的抗压强度在不同橡胶粒径与掺量条件下均得到提升;SEM结果表明极性亲水基团的引入能较好地提升橡胶颗粒与胶凝材料的粘接性能,有利于改善两者结合界面薄弱的问题,增强橡胶混凝土的整体强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘誉贵
马育
刘攀
关键词:  氨化改性  磺化改性  改性机理分析  极性亲水基团  强度    
Abstract: In order to improve the strength performance of rubber concrete, in this paper, urea and NaHSO3 modifiers were used to modify the rubber granules by ammoniation and sulfonation.The polar hydrophilic group was introduced by FT-IR, the hydrophilic ability of modified rubber was analyzed by water contact angle tester. Through the adhesive strength test and the compressive strength test, the effect of modified rubber on the strength performance of rubberized concrete is studied. SEM was used to cha-racterize the failure microscopic morphology of rubber concrete. The results showed that the carbonyl and amino were introduced on the surface of the rubber particles by sulfonation, and hydroxyl and sulfonic were introduced on the surface of the rubber particles by sulfonation. Compared with normal group, after ammoniation modified and sulfonated modified, modified rubber-water contact angle reduction of 31° and 35° respectively, the adhesion strength between modified rubber and cement paste increased by 44% and 53% respectively, and the compressive strength of modified rubber concrete was improved under the condition of different particle size and content of rubber. SEM showed that the introduction of polar hydrophilic group, can improve the adhesion performance between rubber particles and cementitious materials, beneficial to improve the weak interface between the two, and enhanced the overall strength performance of rubber concrete.
Key words:  ammoniation modification    sulfonation modification    modification mechanism analysis    polar hydrophilic group    strength
                    发布日期:  2018-10-18
ZTFLH:  TU528  
基金资助: 道路结构与材料交通行业重点实验室(长沙)开放基金(kfj140303)
通讯作者:  马育:女,1953年生,硕士,教授,硕士研究生导师,主要从事路面新材料研究 E-mail:mayu_he@sina.com   
作者简介:  刘誉贵:男,1993年生,硕士研究生,主要从事道路材料研究 E-mail:893251497@qq.com
引用本文:    
刘誉贵, 马育, 刘攀. 氨化与磺化改性橡胶混凝土机理及强度研究[J]. 材料导报, 2018, 32(18): 3142-3145.
LIU Yugui, MA Yu, LIU Pan. Study on Mechanism and Strength of Ammoniated Modified Rubber Concrete and Sulfonated Modified Rubber Concrete. Materials Reports, 2018, 32(18): 3142-3145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.008  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3142
1 Gupta T, Siddique S, Sharma R K, et al. Effect of elevated tempe-rature and cooling regimes on mechanical and durability properties of concrete containing waste rubber fiber[J]. Construction & Building Materials,2017,137:35.
2 Liu Y R, Ge S K, Han Y. Research progress of scrap rubber powder modified cement-based composites[J]. Materials Review,2014,28(S2):422(in Chinese).
刘艳荣,葛树奎,韩瑜.废旧轮胎橡胶粉改性水泥基材料研究概况[J].材料导报,2014,28(专辑24):422.
3 Wang L, Fan L L. Analysis of road performance between rub-concrete and general concrete materials[J]. Journal of Harbin Institute of Technology,2016,48(3):77(in Chinese).
王龙,范璐璐.橡胶颗粒水泥混凝土与基质混凝土路用性能对比分析[J].哈尔滨工业大学学报,2016,48(3):77.
4 Tian S, Yu T L, Liu Z Y. Application of rubberized concrete in deck pavement heat insulation[J]. Journal of Guilin University of Technology,2013,33(4):650(in Chinese).
田帅,于天来,刘子英.橡胶混凝土在桥面铺装隔热技术中的应用[J].桂林理工大学学报,2013,33(4):650.
5 Gholampour A, Ozbakkaloglu T, Hassanli R. Behavior of rubbe-rized concrete under active confinement[J]. Construction & Building Materials,2017,138:372.
6 Wang J J, Zhang Y H, Qin W X, et al. Mechanical properties of rubber concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(7):2219(in Chinese).
王军军,张仪华,秦文轩,等.废旧橡胶混凝土力学性能的研究[J].硅酸盐通报,2016,35(7):2219.
7 Wang Z S, Su H L. Correlation between recycled rubber concrete strength and damage evolution in freeze thaw cycles[J]. Bulletin of the Chinese Ceramic Society,2016,35(12):4286(in Chinese).
汪振双,苏昊林.冻融条件下再生橡胶混凝土损伤演变与强度相关性研究[J].硅酸盐通报,2016,35(12):4286.
8 Thomas B S, Gupta R C, Panicker V J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance[J]. Journal of Cleaner Production,2016,112:504.
9 Ye Q J, Yu J, Gong X N. Law of chloride ion penetration in rubbe-rized concrete under loading[J]. Materials Review,2014,28(S2):327(in Chinese).
叶启军,喻军,龚晓南.荷载作用下橡胶混凝土抗氯离子渗透规律研究[J].材料导报,2014,28(专辑24):327.
10 Long Guangcheng, Li Ning, Xue Yihua, et al. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load[J]. Journal of the Chinese Ceramic Society,2016,44(8):1081(in Chinese).
11 Olaf Engler,Simon Miller-Jupp.Control of second-phase particles in the Al-Mg-Mn alloy AA 5083[J].Journal of Alloys and Compounds,2016,689(25):998.
12 Zhang Jinshan,Chao Xin. Microstructure and mechanical properties of Mg-Zn-Dy-Zr alloy with long-period stacking ordered phases by heat treatments and ECAP process[J].Materials Science and Engineering,2014,611(12):108.
13 Tan Guoyin, Yue Youcheng, Yang Gang, et al. Evolutionary behavior of Al-Fe-Si second-phase particles in rolling process in 1235 ultra-thin double-zero aluminum foil[J].Rare Metal Materials and Engineering,2016,45(4):979(in Chinese).
谭国寅,岳有成,杨钢,等.1235超薄双零铝箔坯料中Al-Fe-Si第二相粒子在轧制过程中演化行为[J].稀有金属材料与工程,2016,45(4):979.
14 Shin H D, Pak J J, Kim Y K, et al. Effect of pressing temperature on 44 microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J].Materials Science and Engineering,2002,325(1):31.
15 Liu Gang, Zhang Guojun. Fracture toughness model of high strength aluminum alloy with different scales of the second phase[J].Transactions of Nonferrous Metals Society of China,2002,12(4):707.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[4] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[5] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[6] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[7] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[10] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[11] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[12] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[13] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[14] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[15] 张建龙, 薛河, 鲁元. Super304H/T92奥氏体耐热钢摩擦焊焊接接头持久强度及断裂行为[J]. 材料导报, 2019, 33(12): 2067-2070.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed