Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4047-4050    https://doi.org/10.11896/j.issn.1005-023X.2018.23.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池
甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏
湖北大学材料科学与工程学院,功能材料绿色制备与应用教育部重点实验室,有机化工新材料湖北省协同创新中心,武汉 430062
Hole-transport-layer-free Organic-Inorganic Hybrid Perovskite Solar Cells with ZnO Nanorod Arrays as Electron Transport Layer
GAN Yisheng, CHEN Miaomiao, WANG Yulong, WAN Li, KONG Mengqin, HU Hang, WANG Shimin
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062
下载:  全 文 ( PDF ) ( 1509KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,有机-无机杂化钙钛矿太阳能电池(PSCs)发展迅速,其光电转化效率(PCE)已提升至23.3%,成为当今太阳能电池领域无可争议的研究焦点。研究发现,PSCs结构组成与性质对光电性能影响显著。其中,电子传输层的形貌结构不仅影响钙钛矿晶体的成长,同时也决定了电子扩散系数和电子寿命。本工作将ZnO纳米棒阵列(Nanorods array,NRAs)作为电子传输层,应用于无空穴传输层的基于碳对电极的杂化钙钛矿太阳能电池中。通过水热法制备了不同长度的ZnO NRAs,经测试发现,对应的钙钛矿电池的PCE随ZnO NRAs长度的增加呈先升高后下降的趋势,当ZnO NRAs长度为454 nm时,PCE最优为6.18%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘一升
陈苗苗
王玉龙
万丽
孔梦琴
胡航
王世敏
关键词:  无空穴传输层  钙钛矿太阳能电池  电子传输层  氧化锌纳米棒阵列    
Abstract: Organic-inorganic hybrid perovskite solar cells (PSCs) have recently undergone rapid progress, and since its invention, its photoelectric conversion efficiency (PCE) has been experiencing surprisingly swift and frequently record-breaking growth, and finally reached the present record 23.3%. This makes PSCs an indisputable research hotspot in the field of solar cells. The structure and properties of PSCs have been found significant to the device performance. Moreover, the morphology of electron transport layer not only affects the morphology of perovskite, but also dominates the electron diffusion coefficient and electron lifetime. In this work, zinc oxide nanorod arrays (ZnO NRAs) were firstly applied as the electron transport layer in hole-transport-layer-free, carbon-counter electrode based perovskite solar cells, and in the meanwhile, its feasibility had been confirmed. A series of ZnO NRAs which differ in nanorod length were hydrothermally fabricated. The corresponding PCEs of the solar cells were determined to have a biphasic (increase → decrease) change with the increasing length of ZnO NRAs, and to reach the optimum alue (6.18%) when the length of ZnO NRAs was 454 nm.
Key words:  hole-transport-layer-free    perovskite solar cell    electron transport layer    zinc oxide nanorod arrays
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TB34  
  TM914.4+2  
基金资助: 国家自然科学基金(21402045; 51572072); 湖北省自然科学基金(2014CFB167); 湖北省科技厅创新群体项目(2013CFA005); 武汉市科技局关键技术攻关计划(2013010602010209)
作者简介:  甘一升:女,1994年生,硕士研究生,主要从有机-无机杂化钙钛矿太阳能电池的研究;万丽:女,1983年生,博士,副教授,硕士研究生导师,研究方向为纳米材料、光电功能材料与器件 E-mail:wanli@hubu.edu.cn;wanli1983_3@aliyun.com
引用本文:    
甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
GAN Yisheng, CHEN Miaomiao, WANG Yulong, WAN Li, KONG Mengqin, HU Hang, WANG Shimin. Hole-transport-layer-free Organic-Inorganic Hybrid Perovskite Solar Cells with ZnO Nanorod Arrays as Electron Transport Layer. Materials Reports, 2018, 32(23): 4047-4050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.003  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4047
20181228130808  图1 不同长度的ZnO NRAs的SEM(a—d,i)正面扫描图,(e—h)断面扫描图
1 Chen Z, Li H, Tang Y, et al.Shape-controlled synthesis of orga-nolead halide perovskite nanocrystals and their tunable optical absorption[J].Materials Research Express,2014,1(1):15034.
2 Zhou H, Chen Q, Li G, et al.Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196):542.
3 Juarez P, Emilio J, et al.Role of the selective contacts in the performance of lead halide perovskite solar cells[J].The Journal of Physical Chemistry Letters,2014,5:680.
4 Cui J, Meng F, Zhang H, et al.CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide[J].ACS Applied Mate-rials & Interfaces,2014,6(24):22862.
5 Liu D, Kelly T L.Perovskite solar cells with a planar heterojunction structure prepared using room temperature solution processing techniques[J].Nature photonics,2014,8(2):133.
6 Zhang Q, Dandeneau C S, Zhou X, et al.ZnO Nanostructures for dye-sensitized solar cells[J].Advanced Materials,2009,21(41):4087.
7 Bi D, Boschloo G, Schwarzmüller S, et al.Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells[J].Nanoscale,2013,5(23):11686.
8 Son D, Im J, Kim H, et al.11% Efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system[J].The Journal of Physical Chemistry C,2014,118(30):16567.
9 Zhang L, Yang Y, Fan R, et al.Performances of dye-sensitized solar cell based on ZnO photoanode sensitized with cadmium complexes Cd(phen)2(NO3)(NO2)[J].Chemical Journal of Chinese Universities,2013,34(6):1470(in Chinese).
张凌云,杨玉林,范瑞清,等.金属配合物Cd(phen)2(NO3)(NO2)对ZnO光阳极的敏化特性[J].高等学校化学学报,2013,34(6):1470.
10 Zhou X, Lin T, Zeng X, et al.Study of two-stage hydrothermal growth of branched ZnO nanostructures[J].Journal of Functional Materials,2013,44(21):3108(in Chinese).
周雄图,林锑杭,曾祥耀,等.两步水热法制备枝干状ZnO纳米结构的研究[J].功能材料,2013,44(21):3108.
11 Xiao Z, Zhang M, Guo M.Investigation on zinc oxide thin films prepared by sol-gel progress[J].Journal of Synthetic Crystals,2008,37(4):1003(in Chinese).
肖宗湖,张萌,郭米艳.溶胶-凝胶法制备ZnO薄膜的特性研究[J].人工晶体学报,2008,37(4):1003.
12 Liu K, Ji Z, Yang C, et al.Characterization of C-axis oriented zinc oxide films prepared by reactive deposition[J].Vacuum Science & Technology,2002,22(6):470(in Chinese).
刘坤,季振国,杨成兴,等.反应沉积法制备C轴取向ZnO薄膜及表征[J].真空科学与技术,2002,22(6):470.
13 Wang R, Ruan H.Progress of ZnO-based transparent conductive films deposited on flexible substrate[J].Journal of Chongqing Institute of Technology,2015,29(5):33(in Chinese).
王然龙,阮海波.柔性ZnO基透明导电薄膜的研究进展[J].重庆理工大学学报(自然科学版),2015,29(5):33.
14 Zhou J, Dong X, Qiu X, et al.Electrochemical deposition and cha-racterization of zinc oxide thin films[J].Journal of Nanyang Normal University,2013,12(9):20(in Chinese).
周俊娇,董晓哲,邱向楠,等.ZnO薄膜的电化学沉积及其性能研究[J].南阳师范学院学报,2013,12(9):20.
15 Tak Y, Yong K.Controlled growth of well-aligned ZnO nanorod array using a novel solution method[J].The Journal of Physical Che-mistry B,2005,109(41):19263.
16 Zhou J, Han G.Characteristics of ZnO films prepared by ultrasonic spray pyrolysis method[J].Journal of Functional Materials,2006,37(4):576(in Chinese).
周佳,韩高荣.超声喷雾热解法制备ZnO薄膜及性能研究[J].功能材料,2006,37(4):576.
17 Ding P, Pan X, Ye Z.Electrical and optical properties of Sb-doped ZnO thin films[J].Journal of Chongqing Institute of Technology,2010,24(5):50(in Chinese).
丁萍,潘新花,叶志镇.Sb掺杂ZnO薄膜电学、光学性能研究[J].重庆理工大学学报(自然科学版),2010,24(5):50.
18 Savu R, Parra R, Joanni E, et al.The effect of cooling rate during hydrothermal synthesis of ZnO nanorods[J]. Journal of Crystal Growth,2009,311(16):4102.
19 Chen M, Zhang Q, Wan L, et al.High-efficiency hole-conductor-free rutile TiO2-Nanorod/CH3NH3PbI3 heterojunction solar cells with commercial carbon ink as counter-electrode[J].Solar Energy,2018,170:1087.
20 Vayssieres L.Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J].Advanced Materials,2003,15:464.
21 Feng X, Feng L, Jin M, et al.Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J].Journal of the American Chemical Society,2004,126(1):62.
[1] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[2] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[3] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[4] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed