Please wait a minute...
材料导报  2018, Vol. 32 Issue (13): 2151-2160    https://doi.org/10.11896/j.issn.1005-023X.2018.13.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究
陈健1, 缪卫峰1, 王吉林1,2, 郑国源1, 龙飞1,2
1 桂林理工大学材料科学与工程学院,有色金属及材料加工新技术教育部重点实验室,桂林 541004;
2 桂林理工大学广西有色金属隐伏矿床勘查及材料开发协同创新中心,桂林 541004
A Brief Survey on the Stability Study of Organometal Halide Perovskite Solar Cells
CHEN Jian1, MIU Weifeng1, WANG Jilin1,2, ZHENG Guoyuan1, LONG Fei1,2
1 Key Laboratory of Nonferrous Material and New Processing Technology of Ministry of Education, School of MaterialsScience and Engineering, Guilin University of Technology, Guilin 541004;
2 Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin Universityof Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 1330KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机金属卤化物钙钛矿太阳能电池近几年来发展迅速,其器件认证光电转效率已达22.1%。同时,这类电池具有成本低廉、能量回收期短等优势,有望实现商业化应用。然而,钙钛矿吸光层本身在湿度较大、温度较高及光照等条件下不稳定,并且与其他功能层组装成器件时易引发电极腐蚀、深缺陷态等问题,使得器件不稳定性加剧。越来越多的文献报道了提升器件稳定性的方法,主要集中在:(1)从成分优化方面提升钙钛矿吸光层的稳定性;(2)从器件结构优化方面提升器件的稳定性。   在成分优化方面,科研者们主要从钙钛矿ABX3结构成分、结构维度和保护层的使用等角度提升钙钛矿材料的稳定性。(1)在满足容差因子t或八面体因子μ的条件下,将甲脒离子、铯离子等疏水或耐热基团引入ABX3结构的A位中,而X位掺入溴离子或硫氰根离子能提升钙钛矿材料的抗湿性,或者整合单一位置优势得到混合位Csx(MA0.17FA0.83)(100-x)Pb(I0.83Br0.17)3不仅能提升材料的热稳定性,而且可使器件的转换效率提高至21.1%。(2)较低结构维度(主要为二维)钙钛矿材料的研究也获得了一定的进展,例如制得的BA0.05(FA0.83Cs0.17)0.95Pb(I0.8Br0.2)3材料的湿度和光照稳定性优异。(3)疏水性能好、电荷传输能力优异的保护层如丁基膦酸4-氯化铵或苄胺等同样可增强钙钛矿吸光层的稳定性。   在器件结构优化方面,研究者们分别从电子传输材料(如二氧化锡、镧掺杂锡酸钡等)、空穴传输材料(如CuGaO2、酞菁铜等)和上电极(碳、铜等)等角度提升器件的稳定性。其中,(1)紫外光催化活性差、电子迁移率优异、能带结构适宜的镧掺杂锡酸钡组成的器件展现了优异的光照稳定性。(2)由化学和热稳定性优异的酞菁铜组成的器件也获得了良好的热稳定性和17.5%的转换效率。(3)优化上电极方面,将碳电极应用到大面积器件上时,器件呈现了良好的湿度和光照稳定性;而铜电极替换金或银电极时,器件的光电转换效率同样超过20%,并且其热和光照稳定性良好。   本文主要从钙钛矿吸光层材料成分和器件结构两大角度梳理了关于提升器件稳定性的研究现状,分别对钙钛矿吸光层ABX3的组分、钙钛矿材料的结构维度、其他功能层等优化方面提升器件稳定性的工作进行了综述。最后,结合现有的研究成果展望了有机金属卤化物钙钛矿太阳能电池的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈健
缪卫峰
王吉林
郑国源
龙飞
关键词:  有机金属卤化物钙钛矿太阳能电池  稳定性  成分优化  器件优化    
Abstract: The organicmetal halide perovskite solar cells has been developing rapidly in recent years, and the cells’ certified photoelectric conversion efficiency has reached 22.1%. Simultaneously, low cost, short energy payback time and other merits have made the commercial application of organicmetal halide perovskite solar cells into reality. Nevertheless, the perovskite itself is not stable in the circumstances of high humidity, high temperature or light. Especially, the instability of perovskite will be more serious when assembled with other functional layers into the device, because electrode corrosion or deep defects will be easily initiated in this situation. More and more literature has reported various methods to improve the stability of the device, which mainly focuses on two aspects: Ⅰ. controlling the composition of the perovskite material to enhance the stability; Ⅱ. optimizing the device structure of the solar cells to enhance the stability.   As for the component optimization, researchers put efforts in modifying ABX3 structure, controlling structural dimension and the use of protective layer to improve the stability of perovskite materials themselves. Ⅰ. With the satisfaction of the requirements of Goldschmidt tolerance factor t or octahedral factor μ, the introduction of hydrophobic or temperature-resistant groups like formamidinium or cesium cation into the A site of ABX3, while incorporation of bromide anion or thiocyanate ion into X site will increase the moisture resistance of perovskite material. What’s more, a combination sites of perovskite Csx(MA0.17FA0.83)(100-x)Pb(I0.83Br0.17)3 could not only improve the thermal stability but also enhance the device’s conversion efficiency to 21.1%. Ⅱ. Low-dimensional (mainly two-dimensional) perovskite materials have also been comprehensively studied. For instance, BA0.05(FA0.83Cs0.17)0.95Pb(I0.8-Br0.2)3 displays excellent stability in high humidity and light circumstances. Ⅲ. Protective layers with favorable hydrophobic properties, excellent charge transport ability such as butylphosphonic acid 4-ammonium chloride or benzylamine can also enhance the stabi-lity of the perovskite material.   As for the device structure optimization, researchers have tried to strengthen the stability of the device through changing electron transporting material (SnO2, La-doped BaSnO3, etc.), hole transporting material (CuGaO2, CuPC etc.) and counter electrode (carbon, copper etc.), respectively. For example, La-doped BaSO3 has weak UV photocatalytic activity, excellent electron mobility and suitable energy band structure, the device with La-doped BaSO3 as electron transporting material show unexceptionable light stability. In addition, taking chemical and thermal stable CuPC as the hole transporting material of the device could not only achieve favorable thermal stability but also obtain a conversion efficiency of 17.5%. Considering the counter electrode, carbon electrode shows excellent stability under high humidity and light conditions when it applies to large area devices. Moreover, when copper electrode replace gold or silver electrode, the device acquired a conversion efficiency of more than 20%, and presented an admirable heat and light stability as well.   This review mainly summarizes the current status of the stability study of organometallic halide perovskite solar cells in view of the perovskite absorbing material compositions and device structure. Researches about optimizing the stability of the device from the perovskite composition of ABX3, structural dimension of perovskite material and the use of other functional layers are summarized. Finally, the development trends of organometallic halide perovskite solar cells are proposed based on the available research.
Key words:  organicmetal halide perovskite solar cell    stability    component optimization    device optimization
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TM914.4+2  
基金资助: 国家自然科学基金(51372044);广西自然科学基金(2014GXNSFFA118004);广西“特聘专家”专项经费;广西建筑新能源与节能重点实验室开放基金(16-J-21-10)
作者简介:  陈健:男,1991年生,硕士研究生,研究方向为钙钛矿太阳能电池材料 E-mail:NeoChenCHN@outlook.com
引用本文:    
陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
CHEN Jian, MIU Weifeng, WANG Jilin, ZHENG Guoyuan, LONG Fei. A Brief Survey on the Stability Study of Organometal Halide Perovskite Solar Cells. Materials Reports, 2018, 32(13): 2151-2160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.003  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2151
1 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050.
2 Yang W S, Park B W, Jung E H, et al. Iodide management in forma-midinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376.
3 Park N G, Grätzel M, Miyasaka T, et al. Towards stable and commercially available perovskite solar cells[J].Nature Energy,2016,1(11):16152.
4 Gong J, Darling S B, You F. Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts[J].Energy & Environmental Science,2015,8(7):1953.
5 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643.
6 Li C, Lu X, Ding W, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites[J].Acta Crystallographica,2008,64(6):702.
7 Yin W J, Yang J H, Kang J, et al. Halide perovskite materials for solar cells: A theoretical review[J].Journal of Materials Chemistry A,2015,3(17):8926.
8 Xiao Z, Yan Y. Progress in theoretical study of metal halide perovskite solar cell materials[J].Advanced Energy Materials,2017,7(22):1701136.
9 Noh J H, Sang H I, Jin H H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Letters,2013,13(4):1764.
10 Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J].Energy & Environmental Science,2014,7(3):982.
11 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J].Science,2013,342(6156):341.
12 Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells[J].Energy & Environmental Science,2013,6(11):3249.
13 Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J].Advanced Materials,2014,26(27):4653.
14 Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(17):8970.
15 Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].Journal of Materials Chemistry A,2013,1(18):5628.
16 Philippe B, Park B W, Lindblad R, et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation[J].Chemistry of Materials,2015,27(5):1720.
17 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2:591.
18 Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J].Journal of Applied Physics,1961,32(3):510.
19 Tress W. Maximum efficiency and open-circuit voltage of perovskite solar cells[M]∥Organic-inorganic halide perovskite photovoltaics. Springer,2016:53.
20 Leijtens T, Eperon G E, Noel N K, et al. Stability of metal halide perovskite solar cells[J].Advanced Energy Materials,2015,5(20):1500963.
21 Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J].Science,2014,345(6194):295.
22 Peng W, Miao X, Adinolfi V, et al. Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties[J].Angewandte Chemie,2016,55(36):10686.
23 Binek A, Hanusch F C, Docampo P, et al. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide[J].The Journal of Physical Chemistry Letters,2015,6(7):1249.
24 Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell[J].Advanced Energy Materials,2015,5(20):1501310.
25 Zhao X G, Yang J H, Fu Y, et al. Design of lead-free inorganic ha-lide perovskites for solar cells via cation-transmutation[J].Journal of the American Chemical Society,2017,139(7):2630.
26 Park B W, Philippe B, Zhang X, et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application[J].Advanced Materials,2015,27(43):6806.
27 Xiao Z, Meng W, Wang J, et al. Searching for promising new pe-rovskite-based photovoltaic absorbers: The importance of electronic dimensionality[J].Materials Horizons,2017,4(2):206.
28 Slavney A H, Hu T, Lindenberg A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J].Journal of the American Chemical Society,2016,138(7):2138.
29 Xiao Z, Meng W, Wang J, et al. Thermodynamic atability and defect chemistry of bismuth-based lead-free double perovskites[J].ChemSusChem,2016,9(18):2628.
30 Klug M T, Osherov A, Haghighirad A A, et al. Tailoring metal ha-lide perovskites through metal substitution: Influence on photovol-taic and material properties[J].Energy & Environmental Science,2017,10(1):236.
31 Zhao W, Yang D, Yang Z, et al. Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells[J].Materials Today Energy,2017,5:205.
32 Chen Q, Chen L, Ye F, et al. Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells[J].Nano Letters,2017,17(5):3231.
33 Yang T Y, Gregori G, Pellet N, et al. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer[J].Angewandte Chemie,2015,54(27):7905.
34 Akkerman Q A, D'Innocenzo V, Accornero S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J].Journal of the American Chemical Society,2015,137(32):10276.
35 Yang B, Keum J, Ovchinnikova O S, et al. Deciphering halogen competition in organometallic halide perovskite growth[J].Journal of the American Chemical Society,2016,138(15):5028.
36 Wang B, Young W K, Xiao X, et al. Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells[J].Scientific Reports,2015,5:10557.
37 Mosconi E, Ronca E, De Angelis F. First-principles investigation of the TiO2/organohalide perovskites interface: The role of interfacial chlorine[J].The Journal of Physical Chemistry Letters,2014,5(15):2619.
38 Chen Y, Chen T, Dai L. Layer-by-layer growth of CH3NH3PbI3-x-Clx for highly efficient planar heterojunction perovskite solar cells[J].Advanced Materials,2015,27(6):1053.
39 Tai Q, You P, Sang H, et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity[J].Nature Communications,2016,7:11105.
40 Jiang Q, Rebollar D, Gong J, et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films[J].Angewandte Chemie,2015,54(26):7617.
41 Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517(7535):476.
42 Yi C, Luo J, Meloni S, et al. Entropic stabilization of mixed A-ca-tion ABX3 metal halide perovskites for high performance perovskite solar cells[J].Energy & Environmental Science,2016,9(2):656.
43 Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency[J].Energy & Environmental Science,2016,9(6):1989.
44 Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J].Science,2016,354(6309):206.
45 Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells[J].Journal of the American Chemical Society,2016,138(49):15829.
46 Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J].Advanced Energy Materials,2016,6(8):1502458.
47 Li X, Zhong X, Hu Y, et al. Organic-inorganic copper(Ⅱ)-based material: A low-toxic, highly stable light absorber for photovoltaic application[J].The Journal of Physical Chemistry Letters,2017,8(8):1804.
48 Yang Z, Rajagopal A, Chueh C C, et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells[J].Advanced Materials,2016,28(40):8990.
49 Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J].Science,2016,354(6314):861.
50 Duong T, Wu Y, Shen H, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency[J].Advanced Energy Materials,2017,7(14):1700228.
51 Quan L N, Yuan M, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites[J].Journal of the American Chemical Society,2016,138(8):2649.
52 Zhang X, Ren X, Liu B, et al. Stable high efficiency two-dimensio-nal perovskite solar cells via cesium doping[J].Energy & Environmental Science,2017,10(10):2095.
53 Zhang T, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic a-CsPbI3 perovskite phase for high-efficiency solar cells[J].Science Advances,2017,3(9):e1700841.
54 Ma C, Leng C, Ji Y, et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J].Nanoscale,2016,8(43):18309.
55 Wang Z, Lin Q, Chmiel F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J].Nature Energy,2017,2(9):17135.
56 Yang S, Wang Y, Liu P, et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J].Nature Energy,2016,1(2):15016.
57 Li X, Dar M I, Yi C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J].Nature Chemistry,2015,7(9):703.
58 Wang F, Geng W, Zhou Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells[J].Advanced Materials,2016,28(45):9986.
59 Zuo C, Bolink H J, Han H, et al. Advances in perovskite solar cells[J].Science Advances,2016,3(7):1500324.
60 Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO(2) with meso-superstructured organometal tri-halide perovskite solar cells[J].Nature Communications,2013,4:2885.
61 Pathak S K, Abate A, Ruckdeschel P, et al. Performance and stabi-lity enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2[J].Advanced Functional Materials,2015,24(38):6046.
62 Yin G, Ma J, Jiang H, et al. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature[J].ACS Applied Materials & Interfaces,2017,9(12):10752.
63 Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer[J].The Journal of Physical Chemistry Letters,2015,6(3):432.
64 Xu J, Buin A, Ip A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J].Nature Communications,2015,6:7081.
65 Li W, Zhang W, Van Reenen S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification[J].Energy & Environmental Science,2016,9(2):490.
66 Chander N, Khan A F, Chandrasekhar P S, et al. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+ down-shifting nano-phosphor layer in organometal ha-lide perovskite solar cells[J].Applied Physics Letters,2014,105(3):6050.
67 Bella F, Griffini G, Correa-Baena J P, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers[J].Science,2016,354(6309):203.
68 Liu Q, Qin M C, Ke W J, et al. Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers[J].Advanced Functional Materials,2016,26(33):6069.
69 Guo Y, Liu T, Wang N, et al. Ni-doped α-Fe2O3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability[J].Nano Energy,2017,38:193.
70 Shin S S, Yeom E J, Yang W S, et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells[J].Science,2017,356(6334):167.
71 Jiang Q, Zhang L, Wang H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J].Nature Energy,2016,2:16177.
72 Zhu L, Shao Z, Ye J, et al. Mesoporous BaSnO3 layer based perovskite solar cells[J].Chemical Communications,2015,52(5):970.
73 Li D, Wang M. Stability issues of inorganic/organic hybrid lead pe-rovskite solar cells[M]∥Perovskite solar cells: Principle, materials and devices. World Scientific,2017:147.
74 Hawash Z, Ono L K, Raga S R, et al. Air-exposure induced dopant redistribution and energy level shifts in spin-coated Spiro-MeOTAD films[J].Chemistry of Materials,2015,27(2):562.
75 Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: Degradation and stability[J].Energy & Environmental Science,2016,9(2):323.
76 Ito S. Inorganic hole-transporting materials for perovskite solar cell[M]∥Organic-inorganic halide perovskite photovoltaics.Springer,2016:343.
77 Li M, Wang Z K, Yang Y G, et al. Copper salts doped Spiro-OMeTAD for high-performance perovskite solar cells[J].Advanced Energy Materials,2016,6(21):1601156.
78 Lei H, Yang G, Zheng X, et al. Incorporation of high-mobility and room-temperature-deposited CuxS as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells[J].Solar RRL,2017,1(6):170038.
79 Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%[J].Science,2017,358(6364):768.
80 Habisreutinger S N, Noel N K, Snaith H J, et al. Investigating the role of 4-tert butylpyridine in perovskite solar cells[J].Advanced Energy Materials,2017,7(1):1601079.
81 Chen W, Wu Y, Yue Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J].Science,2015,350(6263):944.82 Wu Y, Xie F, Chen H, et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering[J].Advanced Materials,2017,29(28):1701073.
83 Kim I S, Cao D H, Buchholz D B, et al. Liquid water-and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design[J].Nano Letters,2016,16(12):7786.
84 Zhang H, Wang H, Chen W, et al. CuGaO2 : A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J].Advanced Materials,2017,29(8):1604984.
85 Kim Y, Yang T Y, Jeon N, et al. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells[J].Energy & Environmental Science,2017,10(10):2109.
86 Li J, Dong Q, Li N, et al. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells[J].Advanced Energy Materials,2017,7(14):1602922.
87 Domanski K, Correabaena J P, Mine N, et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells[J].ACS Nano,2016,10(6):6306.
88 You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].Nature Nanotechnology,2016,11(1):75.
89 Zhao J, Zheng X, Deng Y, et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?[J].Energy & Environmental Science,2016,9(12):3650.
90 Kaltenbrunner M, Adam G, Glowacki E D, et al. Flexible high po-wer-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J].Nature Materials,2015,14(10):1032.
91 Guerrero A, You J, Aranda C, et al. Interfacial degradation of planar lead halide perovskite solar cells[J].ACS Nano,2016,10(1):218.
92 Sanehira E M, Tremolet de Villers B J, Schulz P, et al. Influence of electrode interfaces on the stability of perovskite solar cells: Reduced degradation using MoOx/Al for hole collection[J].ACS Energy Letters,2016,1(1):38.
93 Priyadarshi A, Haur L J, Murray P, et al. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability[J].Energy & Environmental Science,2016,9(12):3687.
94 Hu Y, Si S, Mei A, et al. Stable large-area (10×10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency[J].Solar RRL,2017,1(2):1600019.
95 Hwang I, Jeong I, Lee J, et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation[J].ACS Applied Materials & Interfaces,2015,7(31):17330.
96 Liu J, Pathak S K, Sakai N, et al. Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter[J].Advanced Materials Interfaces,2016,3(22):1600571.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[7] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[8] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[9] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[10] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[11] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[12] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[13] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[14] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[15] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed