Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11039-11056    https://doi.org/10.11896/cldb.20060145
  无机非金属及其复合材料 |
全无机CsPbBr3钙钛矿太阳电池的研究进展
刘壮, 陈建林*, 黄才友, 彭卓寅*, 何建军, 陈荐
长沙理工大学能源与动力工程学院,能源高效清洁利用湖南省高校重点实验室,长沙 410114
Progress of All-inorganic CsPbBr3 Perovskite Solar Cells
LIU Zhuang, CHEN Jianlin*, HUANG Caiyou, PENG Zhuoyin*, HE Jianjun, CHEN Jian
Key Laboratory of Efficient and Clean Energy Utilization, Colleges of Hunan Province, School of Energy Science & Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 18446KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自2009年第一次报道以来,有机-无机杂化钙钛矿太阳电池(PSCs)的光电转换效率(PCE)从3.8%提升至25.5%,已可以与商业化的晶体硅太阳电池相媲美,引起全世界研究者的极大关注。然而,由于杂化物晶体结构中有机成分弱的化学键,器件长期稳定性受到很大的影响。近年来,用无机Cs+完全取代有机基团构成全无机卤化物钙钛矿被认为是解决太阳电池稳定性问题的有效途径。在Cs基钙钛矿之中,CsPbBr3具有最优异的耐热、耐光、耐湿性能,作为顶电池具有与晶体硅太阳电池组成长寿命叠层太阳电池的潜力。本文系统地综述了CsPbBr3 PSCs领域的研究进展,首先介绍了CsPbBr3 PSCs的发展历史及CsPbBr3的晶体结构和基本特性,随后阐述了CsPbBr3薄膜的制备方法、CsPbBr3的元素掺杂改性、器件的界面工程等方面的研究进展;最后,讨论了当前存在的问题和提高CsPbBr3 PSCs性能的未来方向,为进一步推动钙钛矿太阳电池的实用化进程提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘壮
陈建林
黄才友
彭卓寅
何建军
陈荐
关键词:  全无机钙钛矿太阳电池  CsPbBr3  长期稳定性    
Abstract: Since the first report in 2009, organic-inorganic hybrid perovskite solar cells (PSCs) have seen the improved power conversion efficiency (PCE) from 3.8% to 25.5%, which can be comparable to the commercial crystalline silicon solar cells. They have attracted tremendous attention of researchers all over the world. However, due to the weak-bonded organic components in the hybrid crystal structure, the long-term stability of devices is greatly affected. In recent years, using inorganic Cs+ ion to completely replace organic groups to form all-inorganic perovskites is considered to be an effective way to solve the problem of instability. Among Cs-based perovskites, CsPbBr3 perovskite has the most excellent heat, ultraviolet light and moisture resistance, which is potentially expected to form the top cell of tandem solar cells with long-life crystalline silicon solar cells. In this paper, we systematically reviewed the research progress of CsPbBr3 PSCs. Firstly, the history of CsPbBr3 PSCs, and the crystal structure and basic properties of CsPbBr3 are briefly introduced, and then the preparation methods of CsPbBr3 thin films, element doping modification of CsPbBr3, interface engineering of devices, and other aspects of the research progress to promote the PCE are elaborated. Finally, the current issues and the future prospect of improving the performance of CsPbBr3 PSCs are discussed, which will provide a feasible reference to further promote the practical process of perovskite solar cells.
Key words:  all-inorganic perovskite solar cells    CsPbBr3    long-term stability
                    发布日期:  2021-06-25
ZTFLH:  TB34  
基金资助: 湖南省自然科学基金(2020JJ4097); 国家留学基金委留金发2017(3059); 长沙理工大学“双一流”科学研究国际合作拓展项目(2018IC15)
通讯作者:  *cjlinhunu@csust.edu.cn;383904268@C.qq.com   
作者简介:  刘壮,2018年6月毕业于长沙理工大学,获得工学学士学位。现为长沙理工大学能源与动力工程学院硕士研究生,在陈建林副教授的指导下进行研究。目前主要研究领域为柔性钙钛矿太阳电池。陈建林,长沙理工大学能源与动力工程学院副教授、硕士研究生导师、湖南省可再生能源学会副会长。1999年6月本科毕业于桂林工学院,2009年9月博士毕业于湖南大学材料科学与工程专业, 2017年12月—2018年12月国家公派美国明尼苏达大学作访问学者。主要从事太阳能转换与利用的表界面工程研究,主持国家自然科学基金项目1项,发表学术论文40余篇,其中SCI收录25篇、EI收录6篇。彭卓寅,长沙理工大学能源与动力工程学院副教授、硕士研究生导师。2008年6月本科毕业于武汉理工大学材料科学与工程专业,2014年6月博士毕业于武汉理工大学材料物理与化学专业。主要从事新型太阳电池方面的研究,在金属氧化物纳米材料、量子点材料和各种纳米薄膜太阳电池(量子点敏化太阳电池、染料敏化太阳电池、钙钛矿太阳电池等)的可控制备、表征、性能及机理方面开展了大量的研究工作,主持国家自然科学基金项目1项,发表学术论文40余篇,其中SCI收录30余篇。
引用本文:    
刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
LIU Zhuang, CHEN Jianlin, HUANG Caiyou, PENG Zhuoyin, HE Jianjun, CHEN Jian. Progress of All-inorganic CsPbBr3 Perovskite Solar Cells. Materials Reports, 2021, 35(11): 11039-11056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060145  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11039
1 Stranks S D, Eperon G E, Grancini G, et al. Science,2013,342(6156),341.
2 Wehrenfennig C, Eperon G E, Johnston M B, et al. Advanced Materials,2014,26(10),1584.
3 Jeon N J, Noh J H, Yang W S, et al. Nature,2015,517(7535),476.
4 Park N G. Materials Today,2015,18(2),65.
5 Liu Y, Zhang Y, Yang Z, et al. Advanced Materials,2016,28(41),9204.
6 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics,2014,8(7),506.
7 Saliba M, Matsui T, Domanski K, et al. Science,2016,354(6309),206.
8 Kim M, Kim G H, Lee T K, et al. Joule,2019,3(9),2179.
9 Li D, Liao P, Shai X, et al. RSC Advances,2016,6(92),89356.
10 Li Z, Klein T R, Kim D H, et al. Nature Reviews Materials,2018,3(4),1.
11 Leijtens T, Bush K A, Prasanna R, et al. Nature Energy,2018,3(10),828.
12 Snaith H J. Nature Materials,2018,17(5),372.
13 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society,2009,131(17),6050.
14 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf.
15 Zhang W, Song J, Wang D, et al. Journal of Materials Chemistry C,2018,6(47),13034.
16 Yang Y, You J. Nature,2017,544(7649),155.
17 Han Y, Meyer S, Dkhissi Y, et al. Journal of Materials Chemistry A,2015,3(15),8139.
18 Song T B, Yokoyama T, Stoumpos C C, et al. Journal of the American Chemical Society,2017,139(2),836.
19 Kumar M H, Dharani S, Leong W L, et al. Advanced Materials,2014,26(41),7122.
20 Wu B, Zhou Y, Xing G, et al.Advanced Functional Materials,DOI:10.1002/adfm.201604818.
21 Qiu X, Cao B, Yuan S, et al.Solar Energy Materials and Solar Cells,DOI:10.1016/j.solmat.2016.09.022.
22 Marshall K P, Walker M, Walton R I, et al. Nature Energy,2016,1(12),1.
23 Marshall K P, Walton R I, Hatton R A. Journal of Materials Chemistry A,2015,3(21),11631.
24 Eperon G E, Paternò G M, Sutton R J, et al. Journal of Materials Chemistry A,2015,3(39),19688.
25 Swarnkar A, Marshall A R, Sanehira E M, et al. Science,2016,354(6308),92.
26 Frolova L A, Anokhin D V, Piryazev A A, et al. The Journal of Physical Chemistry Letters,2017,8(1),67.
27 Kim Y G, Kim T Y, Oh J H, et al. Physical Chemistry Chemical Physics,2017,19(8),6257.
28 Li B, Zhang Y, Fu L, et al. Nature Communications,2018,9(1),1.
29 Zhang T, Wang F, Chen H, et al. ACS Energy Letters,2020,5(5),1619.
30 Wang K, Jin Z, Liang L, et al. Nature Communications,2018,9(1),1.
31 Sutton R J, Eperon G E, Miranda L, et al.Advanced Energy Materials,DOI:10.1002/aenm.201502458.
32 Chen C Y, Lin H Y, Chiang K M, et al.Advanced Materials,DOI:10.1002/adma.201605290.
33 Xu W, He F, Zhang M, et al. ACS Energy Letters,2019,4(10),2491.
34 Öz S, Jena A K, Kulkarni A, et al. ACS Energy Letters,2020,5(4),1292.
35 Fu S, Zhang W, Li X, et al. ACS Energy Letters,2020,5(2),676.
36 Zhuang J, Wei Y, Luan Y, et al. Nanoscale,2019,11(31),14553.
37 Lau C F J, Deng X, Ma Q, et al. ACS Energy Letters,2016,1(3),573.
38 Ma Q, Huang S, Wen X, et al.Advanced Energy Materials,DOI:10.1002/aenm.201502202.
39 Sun H, Yu L, Yuan H, et al.Electrochimica Acta,DOI:10.1016/j.elec-tacta.2020.136162.
40 Wang G, Liu J, Lei M, et al.Electrochimica Acta,DOI:10.1016/j.elec-tacta.2020.136354.
41 Wang C, Zhang J, Jiang L, et al.Journal of Alloys and Compounds,DOI:10.1016/j.jallcom.2019.152768.
42 Wang C, Zhang J, Duan J, et al. Materials Science in Semiconductor Processing,2020,108(56),104870.
43 Kulbak M, Gupta S, Kedem N, et al. The Journal of Physical Chemistry Letters,2016,7(1),167.
44 Xu Y, Duan J, Yang X, et al. Journal of Materials Chemistry A,2020,8(23),11859.
45 Zhao Y, Duan J, Wang Y, et al.Nano Energy,DOI:10.1016/j.nanoen.2019.104286.
46 Pei Y, Guo H, Hu Z, et al.Journal of Alloys and Compounds,DOI:10.1016/j.jallcom.2020.155283.
47 Xiang T, Zhang Y, Wu H, et al.Solar Energy Materials and Solar Cells,DOI:10.1016/j.solmat.2019.110317.
48 Wan X, Yu Z, Tian W, et al.Journal of Energy Chemistry,DOI:10.1016/j.jechem.2019.10.017.
49 Liang J, Zhao P, Wang C, et al. Journal of the American Chemical Society,2017,139(40),14009.
50 Nam J K, Chai S U, Cha W, et al. Nano Letters,2017,17(3),2028.
51 Guo Z, Teo S, Xu Z, et al. Journal of Materials Chemistry A,2019,7(3),1227.
52 Ng C H, Ripolles T S, Hamada K, et al. Scientific Reports,2018,8(1),1.
53 Xiang W, Tress W. Advanced Materials,2019,31(44),1902851.
54 Ye Q, Zhao Y, Mu S, et al. Advanced Materials,2019,31(49),1905143.
55 de Weerd C, Gomez L, Capretti A, et al. Nature Communications,2018,9(1),1.
56 Ouedraogo N A N, Chen Y, Xiao Y Y, et al. Nano Energy,DOI:10.1016/j.nanoen.2019.104249.
57 Lau C F J, Wang Z, Sakai N, et al. Advanced Energy Materials,2019,9(36),1901685.
58 Yang Q, Dettori R, Yuan G, et al. Solar Energy,2020,201(37),541.
59 Wang Y, Liu X, Zhang T, et al. Angewandte Chemie International Edition,2019,58(46),16691.
60 Han Y, Zhao H, Duan C, et al. Advanced Functional Materials,2020,30(12),1909972.
61 Wang H, Li H, Cao S, et al. Solar RRL,2020,4(9),226.
62 Kulbak M, Cahen D, Hodes G. The Journal of Physical Chemistry Letters,2015,6(13),2452.
63 Liang J, Wang C, Wang Y, et al. Journal of the American Chemical Society,2016,138(49),15829.
64 Duan J, Zhao Y, He B, et al. Angewandte Chemie International Edition,2018,130(14),3849.
65 Chen W, Zhang J, Xu G, et al. Advanced Materials,2018,30(21),1800855.
66 Li H, Tong G, Chen T, et al. Journal of Materials Chemistry A,2018,6(29),14255.
67 Duan J, Zhao Y, Yang X, et al. Advanced Energy Materials,2018,8(31),1802346.
68 Duan J, Zhao Y, Wang Y, et al. Angewandte Chemie International Edition,2019,131(45),16293.
69 Duan J, Wang Y, Yang X, et al. Angewandte Chemie International Edition,2020,59(11),4391.
70 Tong G, Chen T, Li H, et al.Nano Energy,DOI:10.1016/j.nanoen.2019.104015.
71 Kim H S, Im S H, Park N G. The Journal of Physical Chemistry C,2014,118(11),5615.
72 Jeon S, Jung M C, Ahn J, et al. Nanoscale Horizons,2020,5(6),960.
73 Yu J, Liu G, Chen C, et al. Journal of Materials Chemistry C,2020,8(19),6326.
74 Song Z, Zhao J, Liu Q. Inorganic Chemistry Frontiers,2019,6(11),2969.
75 Duan J, Xu H, Sha W E I, et al. Journal of Materials Chemistry A,2019,7(37),21036.
76 Dirin D N, Cherniukh I, Yakunin S, et al. Chemistry of Materials,2016,28(23),8470.
77 Chang X, Li W, Zhu L, et al. ACS Applied Materials & Interfaces,2016,8(49),33649.
78 Teng P, Han X, Li J, et al. ACS Applied Materials & Interfaces,2018,10(11),9541.
79 Duan J, Dou D, Zhao Y, et al. Materials Today Energy,2018,10(47),146.
80 Liu X, Tan X, Liu Z, et al. Nano Energy,2019,56(16),184.
81 Yang Y, Feng S, Li M, et al. Nano Energy,2018,48(13),10.
82 Paek S, Schouwink P, Athanasopoulou E N, et al.Chemistry of Mate-rials,2017,29(8),3490.
83 Xiao Z, Dong Q, Bi C, et al. Advanced Materials,2014,26(37),6503.
84 Sutanto A A, Lan S, Cheng C F, et al. Solar Energy Materials and Solar Cells,2017,172(11),270.
85 Li X, Bi D, Yi C, et al. Science,2016,353(6294),58.
86 Tang K C, You P, Yan F. Solar RRL,2018,2(8),1800075.
87 Liu X, Liu Z, Tan X, et al.Journal of Power Sources,DOI:10.1016/j.jpowsour.2019.227092.
88 Hoffman J B, Zaiats G, Wappes I, et al. Chemistry of Materials,2017,29(22),9767.
89 Jiang Y, Yuan J, Ni Y, et al. Joule,2018,2(7),1356.
90 Huang D, Xie P, Pan Z, et al. Journal of Materials Chemistry A,2019,7(39),22420.
91 Wang S, Li X, Wu J, et al. Current Opinion in Electrochemistry,2018,11(7),130.
92 Ono L K, Leyden M R, Wang S, et al. Journal of Materials Chemistry A,2016,4(18),6693.
93 Chen C W, Kang H W, Hsiao S Y, et al. Advanced Materials,2014,26(38),6647.
94 Lei J, Gao F, Wang H, et al. Solar Energy Materials and Solar Cells,2018,187(36),1.
95 Liu X, Tan X, Liu Z, et al.Journal of Power Sources,DOI:10.1016/j.jpowsour.2019.227269.
96 Zhang Y, Luo L, Hua J, et al. Materials Science in Semiconductor Processing,2019,98(26),39.
97 Hua J, Deng X, Niu C, et al. RSC Advances,2020,10(15),8905.
98 Zheng G, Zhu C, Ma J, et al. Nature Communications,2018,9(1),1.
99 Zhou Y, Chen J, Bakr O M, et al. Chemistry of Materials,2018,30(19),6589.
100 Kalaiselvi C R, Muthukumarasamy N, Velauthapillai D, et al. Materials Letters,2018,219(35),198.
101 Li Y, Duan J, Yuan H, et al. Solar RRL,2018,2(10),1800164.
102 Li S, Zhang P, Chen H, et al. Journal of Power Sources,2017,342(42),990.
103 Chen B X, Li W G, Rao H S, et al. Nano Energy,2017,34(19),264.
104 Chouhan A S, Jasti N P, Hadke S, et al. Current Applied Physics,2017,17(10),1335.
105 Tang M, He B, Dou D, et al.Chemical Engineering Journal,DOI:10.1016/j.cej.2019.121930.
106 Swarnkar A, Mir W J, Nag A. ACS Energy Letters,2018,3(2),286.
107 Bai D, Zhang J, Jin Z, et al. ACS Energy Letters,2018,3(4),970.
108 Zhao Y, Wang Y, Duan J, et al. Journal of materials chemistry A,2019,7(12),6877.
109 Peng Z, Sun Z, Chen J, et al. Solar Energy,2020,205(34),161.
110 Peng Z, Sun Z, Liu Y, et al.Journal of Alloys and Compounds,DOI:10.1016/j.jallcom.2020.154261.
111 Yang Z, Chen W, Mei A, et al.Journal of Alloys and Compounds,DOI:10.1016/j.jallcom.2020.155488.
112 Wang B, Zhang M, Cui X, et al. Angewandte Chemie International Edition,2020,132(4),1628.
113 El Haimeur A, Makha M, Bakkali H, et al. Solar Energy,2020,195(17),475.
114 Chen K, Zhong Q, Chen W, et al. Advanced Functional Materials,2019,29(24),1900991.
115 Chen K, Jin W, Zhang Y, et al. Journal of the American Chemical Society,2020,142(8),3775.
116 Wang H, Li H, Cai W, et al. Nanoscale,2020,12(27),14369.
117 Tumen-Ulzii G, Matsushima T, Klotz D, et al. Communications Materials,2020,1(1),1.
118 Jiang Q, Zhang L, Wang H, et al. Nature Energy,2016,2(1),1.
119 Yun A J, Kim J, Hwang T, et al. ACS Applied Energy Materials,2019,2(5),3554.
120 Zhao Y, Duan J, Yuan H, et al. Solar RRL,2019,3(3),1800284.
121 Li W, Peng Z, Sun Z, et al.Journal of Alloys and Compounds,DOI:10.1016/j.jallcom.2019.152628.
122 Pelicano C M, Yanagi H. Journal of Materials Chemistry C,2019,7(16),4653.
123 Zhang X, Jin Z, Zhang J, et al. ACS Applied Materials & Interfaces,2018,10(8),7145.
124 Commandeur D, Morrissey H, Chen Q. ACS Applied Nano Materials,2020,3(6),5676.
125 Liu Y, Chen Q, Mei A, et al. Sustainable Energy & Fuels,2019,3(3),831.
126 Liu Y, Zhao X, Yang Z, et al. ACS Applied Energy Materials,2020,3(4),3521.
127 Peng Z, Sun Z, Ning Z, et al. Journal of Alloys and Compounds,2020,817(28),153351.
128 Duan J, Zhao Y, He B, et al. Small,2018,14(20),1704443.
129 Liao G, Duan J, Zhao Y, et al. Solar Energy,2018,171(9),279.
130 Huang M, Lu Z, Wen L, et al. Materials Letters,2019,256(17),126619.
131 Wang G, Dong W, Gurung A, et al. Journal of Power Sources,2019,432(35),48.
132 Liu Y, He B, Duan J, et al. Journal of Materials Chemistry A,2019,7(20),12635.
133 Zhao Y, Liu T, Ren F, et al. Materials Chemistry Frontiers,2018,2(12),2239.
134 Liu Z, Sun B, Liu X, et al.Nano-Micro Letters,2018,10(2),34.
135 Murugadoss G, Thangamuthu R. Solar Energy,2019,179(17),151.
136 Yuan H, Zhao Y, Duan J, et al. Journal of Materials Chemistry A,2018,6(47),24324.
137 Zhou S, Tang R, Li H, et al. Journal of Power Sources,2019,439(6),227065.
138 Li X, Tan Y, Lai H, et al. ACS Applied Materials & Interfaces,2019,11(33),29746.
139 Zong Z, He B, Zhu J, et al. Solar Energy Materials and Solar Cells,2020,209(28),110460.
140 Ding J, Duan J, Guo C, et al. Journal of Materials Chemistry A,2018,6(44),21999.
141 Li Q, Bai J, Zhang T, et al. Chemical Communications,2018,54(69),9575.
142 Ding Y, He B, Zhu J, et al. ACS Sustainable Chemistry & Engineering,2019,7(23),19286.
143 Bu F, He B, Ding Y, et al.Solar Energy Materials and Solar Cells,DOI:10.1016/j.solmat.2019.110267.
144 Chen T, Tong G, Xu E, et al. Journal of Materials Chemistry A,2019,7(36),20597.
145 Xu H, Duan J, Zhao Y, et al. Journal of Power Sources,2018,399(26),76.
146 Ling Y, Tan L, Wang X, et al. The Journal of Physical Chemistry Letters,2017,8(14),3266.
147 Zhang X, Xu B, Zhang J, et al. Advanced Functional Materials,2016,26(25),4595.
148 Su G, He B, Gong Z, et al.Electrochimica Acta,DOI:10.1016/j.elec-tacta.2019.135102.
[1] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[2] 朱连诚, 冀志江, 解帅, 张远, 王静, 张琎珺, 李衎, 李飞. 三维立方周期阵列石膏基材料吸波性能仿真与实验研究[J]. 材料导报, 2021, 35(12): 12020-12026.
[3] 沈艳, 刘丹丹, 宋世金, 唐艳艳, 胡一丁, 武浩荣, 虞澜. 透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J]. 材料导报, 2021, 35(10): 10008-10012.
[4] 曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军. 木基多孔炭/铁氧体复合吸波材料的制备与性能表征[J]. 材料导报, 2021, 35(10): 10029-10035.
[5] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[6] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[7] 汪冲, 朱晓云, 龙晋明. 掺杂导电增强相对铝电极性能的影响[J]. 材料导报, 2021, 35(8): 8082-8087.
[8] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[9] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[10] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[11] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[12] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[13] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[14] 刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
[15] 姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[3] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[4] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[5] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[6] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[7] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[8] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[9] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[10] Yan MA,Zhi LI,Ruilong RAN,Kang LI. Research on Application of Silk in Biomaterial Field[J]. Materials Reports, 2018, 32(1): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed