Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2157-2160    https://doi.org/10.11896/cldb.20010089
  高分子与聚合物基复合材料 |
界面聚合法制备十二醇相变微胶囊的工艺及性能
刘炎昌1,2, 娄鸿飞3, 刘东志1,2, 李巍1,2, 周雪琴1,2
1 天津大学化工学院,天津 300354;
2 天津化学化工协同创新中心,天津 300072;
3 中国人民解放军陆军炮兵防空兵学院,南京 210007
Preparation and Properties of Dodecanol Microcapsules by Interfacial Polymerization
LIU Yanchang1,2, LOU Hongfei3, LIU Dongzhi1,2, LI Wei1,2, ZHOU Xueqin1,2
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China;
2 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;
3 PLA Army Academy of Artillery and Air Defense, Nanjing 210007, China
下载:  全 文 ( PDF ) ( 5146KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决低温相变材料稳定性差、不易储存运输等问题,以六亚甲基二异氰酸酯(HDI)、1,3-丙二胺为壁材单体,以相变温度较低、相变潜热较高的十二醇为芯材,通过界面聚合法制备了低温相变微胶囊。由于十二醇具有反应活性,本工作研究了不同结构异氰酸酯作为壁材单体的适应性,探索了1,3-丙二胺水溶液的pH值对微胶囊形貌的影响。在1,3-丙二胺水溶液的pH值为9.0的情况下,制备的微胶囊粒径约2.0 μm,芯材载量为79.8%,熔融温度为24.47 ℃,熔融热焓为142.3 J/g。相比于原位聚合法,界面聚合法制备的微胶囊有更好的致密性,在甲醇中的渗透率下降了40%,提高了十二醇相变材料的稳定性,有效改善了其泄漏、储存运输等方面的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘炎昌
娄鸿飞
刘东志
李巍
周雪琴
关键词:  界面聚合法  原位聚合法  十二醇  低温相变  微胶囊  致密性    
Abstract: To overcome the instability and difficulty in storage of low temperature phase change materials, microencapsulated phase change materials (MEPCMs) were synthesized via interfacial polymerization. Dodecanol, which exhibits low phase change temperature and great phase change latent heat was employed as the core material. However, dodecanol is capable of reacting with isocyanate groups. The reaction rate study of various isocyanates with dodecanol indicates that hexamethylene diisocyanate (HDI) can be used as the shell monomer for the preparation of microcapsules. Effect of the pH value of the 1,3-propanediamine aqueous solutions on the morphology of MEPCMs was explored. When the pH of the 1,3-propanediamine aqueous solution is about 9.0, large amounts of microcapsules were obtained with an average diameter of about 2.0 μm, core content of 79.8%, melting temperature of 24.47 ℃ and melting enthalpy of 142.3 J/g. In comparison to the in-situ polymerization, the MEPCMs prepared by the interfacial polymerization show better compactness, leading to a decreased permeability in methanol by 40%. Enhanced stability of MEPCMs effectively improves the issues of leakage, storage and transport for low temperature phase change materials.
Key words:  interfacial polymerization    in-situ polymerization    dodecanol    low temperature phase change    microcapsules    compactness
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB34  
基金资助: 中国博士后科学基金(2017T100800)
通讯作者:  zhouxueqin@tju.edu.cn   
作者简介:  刘炎昌,天津大学硕士,主要从事相变微胶囊的研究。
周雪琴,天津大学化工学院教授,博士研究生导师,浙江大学博士,天津大学博士后。主要从事微纳功能材料、有机光电材料、染料与颜料的研究。
引用本文:    
刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
LIU Yanchang, LOU Hongfei, LIU Dongzhi, LI Wei, ZHOU Xueqin. Preparation and Properties of Dodecanol Microcapsules by Interfacial Polymerization. Materials Reports, 2021, 35(2): 2157-2160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010089  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2157
1 Su W G, Darkwa J, Kokogiannakis G. Renewable and Sustainable Energy Reviews, 2015, 48,373.
2 Du X S, Fang Y L, Cheng X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 15541.
3 Khadiran T, Hussein M Z, Zainal Z, et al. Renewable and Sustainable Energy Reviews, 2016, 57, 916.
4 Pethurajan V, Sivan S. Chemical Engineering & Processing: Process Intensification, 2018, 133, 12.
5 Huang X, Zhu C Q, Lin Y X, et al. Applied Thermal Engineering, 2019, 147, 841.
6 Zhou X Q, Wang W, Liu D Z, et al. Chemical Industry and Enginee-ring, 2017, 34(1), 36(in Chinese).
周雪琴, 王薇, 刘东志, 等.化学工业与工程, 2017, 34(1), 36.
7 Song Y F, Lou H F, Liu S M, et al. Modern Chemical Industry, 2018, 38(4), 73(in Chinese).
宋云飞, 娄鸿飞, 刘思敏, 等. 现代化工, 2018, 38(4), 73.
8 Yu F, Chen Z H, Zeng X G. Colloid and Polymer Science, 2009, 287, 549.
9 Wu N, Xu L L, Zhang C N. Advances in Polymer Technology, 2018, 37, 3492.
10 Shao W Y, Feng A N, Che L M, et al. Journal of Chemical Engineering of Japan, 2016, 49(12), 987.
11 Zhang H, Li W, Huang R, et al. New Journal of Chemistry, 2017, 41, 14696.
12 Fang G Y, Li H, Yang F, et al. Chemical Engineering Journal, 2009, 153, 217.
13 Sánchez S L, Lopez V, Cuenca N, et al. Colloid and Polymer Science, 2018, 296, 1449.
14 Wu Z M, Huang X, Cui Y D, et al. Materials Reports B: Research Papers, 2015, 29(7), 73(in Chinese).
吴梓敏, 黄雪, 崔英德, 等. 材料导报:研究篇, 2015, 29(7), 73.
15 Xin C, Lu S F, Shen T W, et al. Fine Chemicals, 2018, 35(7), 1121(in Chinese).
辛成, 陆少锋, 申天伟, 等. 精细化工, 2018, 35(7), 1121.
16 Zhang H Z, Wang X D. Solar Energy Materials & Solar Cells, 2009, 93, 1366.
17 Lu S F, Shen T W, Xing J W, et al. Materials Letters, 2018, 211, 36.
18 Peng H, Zhang D, Ling X, et al. Energy Fuels, 2018, 32, 7262.
19 Zhu K Y, Qi H Z, Wang S, et al. Journal of Macromolecular Science, Part B: Physics, 2012, 51, 1976.
20 Fang Y T, Wei H, Liang X H, et al. Energy Fuels, 2016, 30, 9652.
21 Zhang Y, Zheng X H, Wang H T, et al. Journal of Materials Chemistry A, 2014, 2, 5304.
22 Chen L, Xu L L, Shang H B, et al. Energy Conversion and Management, 2009, 50, 723.
[1] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[2] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[3] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[4] 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J]. 材料导报, 2020, 34(16): 16144-16148.
[5] 何亮, 黄胡端, Wim Van den bergh, Tóth Csaba, 高杰, Karol Kowalski, Jan Valentin. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101.
[6] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[7] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[8] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[9] 李宏英, 王鸿博, 傅佳佳, 王文聪. 薄荷油微胶囊整理对涤纶织物服用性能的影响[J]. 材料导报, 2019, 33(z1): 510-514.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
[12] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[13] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[14] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[15] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed