Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4181-4187    https://doi.org/10.11896/cldb.19010192
  高分子与聚合物基复合材料 |
基于响应面优化的石蜡相变微胶囊的性能评价
张喆, 方健, 席丽敏
北京林业大学材料科学与技术学院,北京100083
Performance Evaluation of Paraffin Phase Change Microcapsules Based on Response Surface Methodology
ZHANG Zhe, FANG Jian, XI Limin
College of Materials Science and Technology, Beijing Forestry University, Beijing 100083
下载:  全 文 ( PDF ) ( 3152KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用响应面设计优化石蜡相变微胶囊的制备工艺参数,建立预测模型,确定优化工艺条件。利用扫描电镜(SEM)、差示量热扫描仪(DSC)、导热系数测试仪以及热重分析仪(TG)对优化工艺条件下制备的石蜡相变微胶囊的形貌和化学结构、包覆性能、热性能及稳定性进行评价。结果表明,微胶囊呈完整的球形,表面光滑,有少量粘连情况,且包覆性能良好,芯材含量为75.77%(质量分数);相变潜热为105.93 J/g、导热系数为0.152 6 W/(m·K);微胶囊热分解温度提高到300 ℃以上;将微胶囊升温至熔点以上,微胶囊体积无变化。上述研究表明微胶囊化处理可以明显增强石蜡的热稳定性和体积稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张喆
方健
席丽敏
关键词:  石蜡  相变微胶囊  性能评价  原位聚合法  响应面优化    
Abstract: Response surface methodology (RSM) was used to optimize the preparation parameters of paraffin microcapsules and the prediction model was established to determine the optimal process conditions. Scanning electron microscopy (SEM), differential calorimetry (DSC), thermal conductivity tester and thermogravimetric analyzer (TG) were used to optimize the morphology, chemical structure, coating properties, thermal properties and stability of paraffin phase change microcapsules prepared under the optimized process conditions. The results showed that the microcapsules were spherical, smooth and slightly adhered. The encapsulation performance was good and the content of core material was 75.77wt%. The latent heat of microcapsules was 105.93 J/g and the thermal conductivity was 0.152 6 W/(m·K). The thermal decomposition temperature of microcapsules was increased to over 300 ℃.The volume of microcapsules remained unchanged when the temperature of microcapsules was raised to above the melting point. It demonstrated that microencapsulation could significantly enhance thermal stability and volume stability of paraffin.
Key words:  paraffin    phase change microcapsule    performance evaluation    in-situ polymerization    response surface optimization
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TQ323  
基金资助: 国家重点研发计划(2016YFD06007013);北京林业大学中央高校基本科研业务费专项资金项目(2017JC12)
作者简介:  张喆,北京林业大学硕士研究生,主要从事相变微胶囊的研究;方健,北京林业大学副教授,主要从事功能性包装材料,包括淀粉、纤维素、壳聚糖、PVA等可降解包装材料及相变微胶囊材料的研究。主持、参与各级教学研究项目9项,其中获评校级教学成果奖1项;发表教改论文5篇;指导各级大学生创新计划10余项。主持、参加国家重点研发计划等各级科研项目9项,发表科研论文20余篇;获得授权发明专利1项、实用新型专利1项;主编、参编著作各1部。
引用本文:    
张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
ZHANG Zhe, FANG Jian, XI Limin. Performance Evaluation of Paraffin Phase Change Microcapsules Based on Response Surface Methodology. Materials Reports, 2019, 33(24): 4181-4187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010192  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4181
1 Jamekhorshid A, Sadrameli S M, Farid M. Renewable and Sustainable Energy Reviews, 2014,31, 531.2 Li Yanqing, Zhang Liyan, Zhou Li, et al. New Chemical Materials, 2018, 46(1),5(in Chinese).李彦庆, 张丽燕, 周莉, 等.化工新型材料, 2018, 46(1),5.3 Zhu Jianping, Hou Huanhuan, Tian Mengdi, et al. New Chemical Materials, 2016, 44(8),1(in Chinese).朱建平, 侯欢欢, 田梦迪, 等.化工新型材料, 2016, 44(8),1.4 Jiang Zhuoni, Yang Wenbin, Zhang Kai, et al. Journal of Southwest University of Science and Technology, 2018, 33(2),7(in Chinese).蒋卓妮, 杨文彬, 张凯, 等.西南科技大学学报, 2018, 33(2),7.5 Xu Jing, Niu Xiaofeng, Zhang Yi, et al. The Chinese Journal of Process Engineering, 2016, 16(5),812(in Chinese).徐箐, 牛晓峰, 张毅, 等.过程工程学报, 2016, 16(5),812.6 Zhang Yi, Xu Jing, Niu Xiaofeng, et al. Acta Materiae Compositae Sinica, 2017, 34(3),661(in Chinese).张毅, 徐箐, 牛晓峰, 等.复合材料学报, 2017, 34(3),661.7 Luo Wusheng, Yu Shengfei. China Power Science and Technology, 2015, 21(3),55(in Chinese).罗武生, 喻胜飞. 中国粉体, 2015, 21(3),55.8 Pan Lijun, Chen Jinquan. Experimental design & data processing, Sout-heast University Press, China, 2008(in Chinese).潘丽军, 陈锦权. 试验设计与数据处理, 东南大学出版社, 2008.9 Li Li, Zhang Sai, He Qiang, et al. Research and Exploration in Laboratory, 2015, 34(8), 41(in Chinese).李莉, 张赛, 何强, 等.实验室研究与探索, 2015, 34(8),41.10 Sami S, Sadrameli S M, Etesami N. Applied Thermal Engineering, 2018,130,1416.11 Jamekhorshid A, Sadrameli S M, Bahramian A R. Applied Thermal Engineering, 2014,70, 183.12 Su Junfeng, Wang Xinyu, Han Shan, et al. Journal of Materials Chemistry A, 2017,5,23937.13 Yang Peng, Han Shan, Su Junfeng, et al. Polymer Composites, 2017,39(S3), 1441.14 Tie Di, Xia Ru, Hao Jiabao, et al. Journal of Functional Materials, 2015, 46(15),15142(in Chinese).铁迪, 夏茹, 郝家宝, 等.功能材料, 2015, 46(15),15142.15 Qian Liuying, Li Dongxue, Li Fengyan, et al. Journal of Petrochemical Universities, 2016, 29(3),7(in Chinese).钱浏滢, 李冬雪, 李凤艳, 等.石油化工高等学校学报, 2016, 29(3),7.16 Qiao Zhen, Mao Jian. New Chemical Materials, 2016, 44(12),88(in Chinese).乔榛, 毛健.化工新型材料, 2016, 44(12),88.17 Xu Chaoxing, Yang Wenbin, Yang Xuping, et al. Journal of Southwest University of Science and Technology, 2015, 30(1),22(in Chinese).徐超星, 杨文彬, 杨序平, 等.西南科技大学学报, 2015, 30(1),22.18 Ni Zhuo, Zhou Fangyu, Cai Honghua, et al. Chemistry and Adhesion, 2015, 37(3),159(in Chinese).倪卓, 周方宇, 蔡弘华, 等.化学与粘合, 2015, 37(3),159.19 Niu Xiaofeng, Xu Qing, Zhang Yi, et al. Nanomaterials, 2017,7(5),1.20 Chai Yuqiao, Zhao Tianbo, Gao Xia, et al. Colloids and Surfaces A, 2018,538,86.21 Xiao Zefang, Liu Shilian, Zhang Zhijun, et al. Progress in Organic Coa-tings, 2018,121,64.
[1] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[2] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[3] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[4] 王朝辉, 傅一, 陈谦, 陈宝, 周骊巍. 环氧沥青混凝土桥面铺装材料研究与应用进展[J]. 材料导报, 2018, 32(17): 2992-3009.
[5] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed