Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2064-2068    https://doi.org/10.11896/cldb.20020159
  金属与金属基复合材料 |
基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用
徐川1, 严观福生1, 孔令庆1, 欧阳新华2, 林乃波1, 刘向阳3
1 厦门大学材料学院,生物仿生及软物质研究院,福建省柔性功能材料重点实验室,厦门 361005;
2 福建农林大学材料工程学院,福州 350002;
3 新加坡国立大学物理系,新加坡 117542
Flexible Transparent Conductive Film Based on Silk Fibroin and Silver Nanowires and Its Photoelectric Applications
XU Chuan1, YANGUAN Fusheng1, KONG Lingqing1, OUYANG Xinhua2, LIN Naibo1, LIU Xiangyang3
1 Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials,Xiamen University, Xiamen 361005, China;
2 College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
3 Department of Physics, National University of Singapore, Singapore 117542
下载:  全 文 ( PDF ) ( 3926KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 丝素蛋白具有优异的生物相容性,可用于生物医学、组织工程等领域。为了探索丝素蛋白在不同交叉领域的应用,本工作首先合成了高长径比的纳米银线,将其旋涂在玻璃基底上,然后流延、浇注再生丝素蛋白溶液,经过干燥后得到具有优异的方块电阻和良好的透光率的柔性导电膜。为了探索该柔性导电膜在光电领域的应用,以纳米银线-丝素蛋白膜代替传统的ITO-玻璃基底制备了简单的有机太阳能电池。结果发现,纳米银线形成了充分接触的网格,并且被丝素蛋白牢牢地包覆,膜的结构没有因为纳米银线的引入而被破坏。纳米银线-丝素蛋白膜在550 nm处的透光率随着纳米银线溶液旋涂次数的增加由最高的97%降低至81%。膜的方块电阻随着纳米银线溶液旋涂次数的增加由最高的33.6 Ω/sq降低至6.0 Ω/sq。有机太阳能电池的光电转换效率为4.78%,开路电压为0.67 V,短路电流为15.22 mA/cm2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐川
严观福生
孔令庆
欧阳新华
林乃波
刘向阳
关键词:  丝素蛋白  纳米银线  透明导电膜  有机太阳能电池    
Abstract: Silk fibroin has excellent biocompatibility and can be used in fields such as biomedicine and tissue engineering. In order to explore the application of silk fibroin in different cross-cutting fields, we synthesized silver nanowires with a high aspect ratio, which were spin-coated on a glass substrate. Then, casted the regenerated silk fibroin solution, flexible conductive film with excellent sheet resistance and good light transmittance was obtained after drying. To explore the application in the field of optoelectronics, a simple organic solar cell was prepared by replacing the traditional ITO-glass substrate with the silver nanowires-silk fibroin (Ag-SF) film. The silver nanowires form a fully contacted grid, which are firmly coated with silk fibroin, the structure of Ag-SF film is not destroyed by the introduction of the silver nanowires. The transmissions of Ag-SF film at 550 nm decrease from 97% to 81% as the numbers of spin coatings of the silver nanowires solution increase. The square resistances of Ag-SF film decrease from the highest 33.6 Ω/sq to 6.0 Ω/sq with the increase of the numbers of spin coatings of the nano-silver wire solution. The photoelectric conversion efficiency of the organic solar cell is 4.78%, the open-circuit voltage is 0.67 V, and the short-circuit current is 15.22 mA/cm2.
Key words:  silk fibroin    silver nanowire    transparent conductive film    organic solar cell
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51773171;21705135);福建省科学技术厅(2017J06019);新加坡国立大学AcRF Tier 1(R144-000-416-114);111项目(B16029);厦门市科技项目(3502Z20183012);广东省科技计划项目(2018B030331001)
通讯作者:  linnaibo@xmu.edu.cn; ouyangxh@fafu.edu.cn   
作者简介:  徐川,于2017年9月至2020年6月在厦门大学材料学院攻读硕士学位。研究方向为丝素基柔性电致发光器件。
林乃波,厦门大学材料学院副教授,博士研究生导师。基于对蚕丝多级结构与性能之间关系的理解,将具有光学性能的材料组装到蚕丝蛋白材料中,通过调节添加物与材料之间的相互作用,赋予了蚕丝材料特殊的光学性能,并将其应用在生物医学领域。以第一作者或通讯联系人在Chem. Soc. RevAdv. Funct. Mater.iScienceSmallNano-Micro Lett.Chem. Eng. J.等上发表了20余篇论文。已撰写两本专著章节,分别由世界知名出版公司Wiley-VCH和Woodhead Publishing出版。授权发明专利11项。主持福建省自然科学基金杰出青年和国家自然科学基金面上项目等。
引用本文:    
徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
XU Chuan, YANGUAN Fusheng, KONG Lingqing, OUYANG Xinhua, LIN Naibo, LIU Xiangyang. Flexible Transparent Conductive Film Based on Silk Fibroin and Silver Nanowires and Its Photoelectric Applications. Materials Reports, 2021, 35(2): 2064-2068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020159  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2064
1 Ostroverkhova O. Chemical Reviews, 2016, 116(22), 13279.
2 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics, 2014, 8(7), 506.
3 Huang S, Liu Y, Zhao Y, et al. Advanced Functional Materials, 2018, 29(6), 1805924.
4 Liu Y F, Feng J, Bi Y G, et al. Advanced Materials Technologies, 2019, 4(1), 1800371.
5 Li D, Lai W Y, Zhang Y Z, et al. Advanced Materials, 2018, 30(10), 1704738.
6 Wang Z B, Helander M G, Qiu J, et al. Nature Photonics, 2011, 5(12), 753.
7 Lee J, Lee P, Lee H, et al. Nanoscale, 2012, 4(20), 6408.
8 Ge Y, Duan X, Zhang M, et al. Journal of the American Chemical Society, 2018, 140(1), 193.
9 Bari B, Lee J, Jang T, et al. Journal of Materials Chemistry A, 2016, 4(29), 11365.
10 Jiang S, Hou P X, Chen M L, et al. Science Advances, 2018, 4(5), 9264.
11 Zhang Z, Du J, Zhang D, et al. Nature Communcations, 2017, 8(1), 14560.
12 Purandare S, Gomez E F, Steckl A J. Nanotechnology, 2014, 25(9), 094012.
13 Posati T, Aluigi A, Donnadio A, et al. Advanced Sustainable Systems, 2019, 3(11), 1900080.
14 Faraco T A, Silva H, Barud H, et al. ACS Applied Materials & Interfaces, 2019, 11(45), 42420.
15 Wang X, Gu Y, Xiong Z, et al. Advanced Materials, 2014, 26(9), 1336.
16 Kim D K, Sim B R, Khang G. ACS Applied Materials & Interfaces, 2016, 8(24), 15160.
17 Li D, Fan Y, Han G, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 10039.
18 Wang Q, Han G, Yan S, et al. Materials, 2019, 12(3), 504.
19 Tomeh M A, Hadianamrei R, Zhao X. Pharmaceutics, 2019, 11(10), 494.
20 Liu Y, Qi N, Song T, et al. ACS Applied Materials & Interfaces, 2014, 6(23), 20670.
21 Qi N, Zhao B, Wang S D, et al. RSC Advances, 2015, 5(63), 50878.
22 Liang Q, Han J, Song C, et al. Journal of Materials Chemistry A, 2018, 6(32), 15610.
23 Yin H, Chiu K L, Bi P, et al. Advanced Electronic Materials, 2019, 5(10), 1900497.
24 Zhang X, Zhang B, Ouyang X, et al. The Journal of Physical Chemistry C, 2017, 121(34), 18378.
25 Feng Y F, Li X F, Li M Z, et al. ACS Sustainable Chemistry Enginee-ring, 2017, 5(7), 6227.
26 Ma P P, Lou Y H, Cong S, et al. Advanced Electronic Materials, 2020, 10(8), 1903357.
27 Yang W L, Li J J, Zhong Y J, et al. CrystEngComm, 2013, 15(14), 2598.
28 Yang Z Q, Qian H J, Chen H Y, et al. Journal of Colloid and Interface Science, 2010, 352(2), 285.
29 Goujon N, Rajkhowa R, Wang X, et al. Journal of Applied Polymer Science, 2013, 128(6), 4411.
30 Qiu W, Patil A, Hu F, et al. Small, 2019, 15(51), 1903948.
31 Lee H B, Jin W Y, Ovhal M M, et al. Journal of Materials Chemistry C, 2019, 7(5), 1087.
32 Yu Z, Li L, Zhang Q, et al. Advanced Materials, 2011, 23(38), 4453.
[1] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[2] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[3] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[4] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[5] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[6] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[7] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[8] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[9] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[10] 任静琨, 刘伟鹏, 李战峰, 孙钦军, 王华, 史方, 郝玉英. 新型三元聚合物给体材料的合成及在有机太阳能电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(17): 133-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed