Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1875-1881    https://doi.org/10.11896/cldb.18040164
  金属与金属基复合材料 |
超薄金属透明导电膜及其应用研究进展
许君君1,2, 黄金华2, 盛伟2, 王肇肇1,2, 赵文凯1,2, 李佳2, 杨晔2, 万冬云1, 宋伟杰2
1 上海大学材料科学与工程学院,上海 200444
2 中国科学院宁波材料技术与工程研究所,宁波 315201
Research Progress on Ultrathin Metal Transparent Conductive Films and Their Applications
XU Junjun1,2, HUANG Jinhua2, SHENG Wei2, WANG Zhaozhao1,2, ZHAO Wenkai1,2, LI Jia2, YANG Ye2, WAN Dongyun1, SONG Weijie2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
下载:  全 文 ( PDF ) ( 2403KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透明导电薄膜被广泛地应用于显示、太阳能电池、发光二极管等光电子器件。近年来,随着信息技术和新材料的不断革新,柔性电子器件在显示、能源及可穿戴等领域得以迅速发展,这对透明导电薄膜的柔性化提出了新的挑战。相比于其他类型柔性透明导电薄膜,超薄金属导电薄膜具有柔性好、导电性好、光电性能均匀、稳定性好、成本低和可大规模制备等优点,有望成为替代ITO的理想材料。超薄金属薄膜的生长和其光电特性息息相关。与常规电介质衬底相比,金属普遍具有较大的表面能,因而金属薄膜在衬底表面通常按照岛状模式生长,阈值厚度高。对薄膜厚度低于阈值厚度的金属薄膜而言,在电学特性方面,纳米团簇形貌使电子在薄膜晶界和表面被过多散射,电子迁移率受到抑制,从而导致电阻率较高。而在光学特性方面,离散的纳米团簇也会引起局域表面等离子体共振,使超薄金属薄膜的透过率曲线在特定波长处明显下降。尽管进一步增加薄膜厚度可以降低电阻率,但厚度的增加会使透过率下降。因此,金属薄膜的超薄、低阈值厚度连续生长是同时获得良好的光学和电学特性的关键。已有的降低超薄金属薄膜阈值厚度的方法包括添加氧化物缓冲层和金属种子层、表面处理、掺杂及低温沉积等。其中添加氧化物的方法因可选择材料种类丰富、制备工艺简单可控等优点,成为制备超薄金属薄膜最普遍的方法;引入金属种子层和掺杂的方法可有效提高金属薄膜的润湿性,然而,其他金属的引入会带来薄膜光学损耗的问题;表面处理的方法对薄膜光学性能的影响较小,其利用聚合物分子层的官能团与金属原子间的键合作用抑制金属原子的扩散;对温度精确控制的要求较高和设备昂贵使低温沉积法的推广面临挑战。本文概述了超薄金属透明导电薄膜的最新研究进展,归纳总结了超薄金属薄膜的生长模式、电学特性和光学特性,重点介绍了降低超薄金属薄膜阈值厚度、实现薄膜连续化生长的多种方法及原理,分析了超薄金属薄膜在太阳能电池、OLEDs、长程表面等离子体激元波导以及Low-E涂层领域的应用情况。最后讨论了超薄金属透明导电膜未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许君君
黄金华
盛伟
王肇肇
赵文凯
李佳
杨晔
万冬云
宋伟杰
关键词:  柔性透明导电膜  超薄金属薄膜  光学电学特性  连续生长    
Abstract: Transparent conductive thin films are widely used in optoelectronic devices such as displays, solar cells and light-emitting diodes. In recent years, with the innovation of information technology and new materials, flexible electronic devices have been rapidly developed in the fields of display, energy and wearable electronics, which poses new challenges to the flexibility of transparent conductive thin films. Compared with other types of flexible transparent conductive thin films, ultrathin metal transparent conductive thin films have the advantages of flexibility, high electrical conductivity, uniform photoelectric performance, good stability, low cost and large-scale preparation, and are expected to be ideal mate-rials for replacing ITO. The growth of ultrathin metal thin films is closely related to their photoelectric properties. Metals generally have higher surface energy than dielectric substrates and thus grow in Volmer-Weber mode, resulting in a high threshold thickness. For metal thin films with thickness below threshold thickness, in terms of electrical properties, the nanocluster morphology causes electrons to be excessively scattered at grain boundaries and surface and suppresses electron mobility, resulting in high resistivity. In terms of optical properties, discrete nanoclusters also induce localized surface plasmon resonance, which causes the transmittance curve of ultrathin metal films to decrease significantly at specific wavelength. Although further increasing the thickness of films can lower the resistivity, the transmittance will decrease accordingly. Therefore, the continuous morphology and low threshold thickness of metal films is the key to obtain good optical and electrical properties at the same time. The existing methods for reducing the threshold thickness of ultrathin metal thin films include the addition of oxide buffer layers and metal seed layers, surface treatments, doping and low-temperature deposition. The method of adding oxide buffer layers is the most commonly used for preparing ultrathin metal films due to the advantages of rich material selection and simple and controllable preparation process. The addition of metal seed layer and doping can effectively improve the wettability of metal thin films, while the introduction of other metals will arise the problem of optical loss, reducing the transmittance of metal films to some extent. The surface treatment method inhibits the diffusion of metal atoms with the covalent chemical bonds between the functional groups of the polymers and metals and has less influence on the optical properties of films. The low-temperature deposition is rarely used because of the requirements for precise temperature control and expensive equipments. In this review, we summarize the recent progress on ultrathin metal transparent conductive films. Firstly, the growth mode, electrical properties, and optical properties of ultrathin metal transparent conductive films are summarized. The methods and mechanism to reduce the threshold thickness of ultrathin metal films are introduced in details. The applications of ultrathin metal transparent conductive films in solar cells, OLEDs, long-range surface plasmon waveguides, and low-E coatings are presented. Finally, the research trends of development for ultrathin metal films are discussed.
Key words:  flexible transparent conductive thin films    ultrathin metal films    optical and electrical properties    continuous growth
                    发布日期:  2019-05-21
ZTFLH:  TB31  
基金资助: 国家自然科学基金面上项目(61774160);宁波市国际合作项目(2017D10005);宁波市创新团队(2016B10005)
通讯作者:  weijiesong@nimte.ac.cn     D   
作者简介:  许君君,2016年毕业于南京工业大学,获得工学学士学位。现为上海大学与宁波材料技术与工程研究所联合培养的硕士研究生,主要在宁波材料技术与工程研究所从事研究工作。目前主要研究领域为超薄金属薄膜。宋伟杰,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。2002年清华大学物理化学专业博士毕业;2002—2006年,在日本物质材料研究机构工作,2006年起加入宁波材料所任研究员,2007年入选中科院百人计划。主要从事新能源技术、功能材料与纳米器件的研究工作。已完成和在研多项国家级和省部级项目及企业合作项目。发表SCI论文九十余篇,被授权中国发明专利二十余项。
引用本文:    
许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
XU Junjun, HUANG Jinhua, SHENG Wei, WANG Zhaozhao, ZHAO Wenkai, LI Jia, YANG Ye, WAN Dongyun, SONG Weijie2. Research Progress on Ultrathin Metal Transparent Conductive Films and Their Applications. Materials Reports, 2019, 33(11): 1875-1881.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040164  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1875
1 Kumar A, Zhou C W. ACS Nano,2010,4(1),11.
2 Lee J Y, Connor S T, Cui Y, et al. Nano Letters,2008,8(2),689.
3 Qi L F, Zhu C T, Yang Y, et al. Materials Review A: Review Papers,2015,29(9),31(in Chinese).
齐亮飞,朱超挺,杨晔,等.材料导报:综述篇,2015,29(9),31.
4 Ghosh D S, Martinez L, Giurgola S, et al. Optics Letters,2009,34(3),325.
5 Hong K, Son J H, Kim S, et al. Chemical Communications,2012,48(86),10606.
6 Guillén C, Herrero J. Thin Solid Films,2011,520(1),1.
7 Guo X Y, Lin J, Chen H, et al. Journal of Materials Chemistry,2012,22(33),17176.
8 Jung Y S, Choi Y W, Lee H C, et al. Thin Solid Films,2003,440(1-2),278.
9 Peng C H, Chen P S, Lo J W, et al. Journal of Materials Science: Materials in Electronics,2016,27(11),12060.
10 Bauer E. Zeitschrift für Kristallographie-Crystalline Materials,1958,110(1-6),395.
11 Rahe P, Lindner R, Kittelmann M, et al. Physical Chemistry Chemical Physics,2012,14(18),6544.
12 Vitos L, Ruban A V, Skriver H L, et al. Surface Science,1998,411(1-2),186.
13 Jaccodine R J. Journal of the Electrochemical Society,1963,110(6),524.
14 Yun J. Advanced Functional Materials,2017,27(18),1606641.
15 Munoz R C, Arenas C. Applied Physics Reviews,2017,4(1),011102.
16 Fuchs K. Mathematical Proceedings of the Cambridge Philosophical Society,1938,34(1),100.
17 Sondheimer E H. Advances in Physics,1952,1(1),1.
18 Mayadas A F, Shatzkes M, Janak J F. Applied Physics Letters,1969,14(11),345.
19 Mayadas A F, Shatzkes M. Physical Review B,1970,1(4),1382.
20 O’Connor B, Haughn C, An K H, et al. Applied Physics Letters,2008,93(22),433.
21 Zhang W, Brongersma S H, Richard O, et al. Microelectronic Enginee-ring,2004,76(1-4),146.
22 Xu H X. Physics Letters A,2003,312(5-6),411.
23 Ditlbacher H, Hohenau A, Wagner D, et al. Physical Review Letters,2005,95(25),257403.
24 Taminiau T H, Stefani F D, van Hulst N F. Nano Letters,2011,11(3),1020.
25 Coronado E A, Encina E R, Stefani F D. Nanoscale,2011,3(10),4042.
26 Ellmer K. Nature Photonics,2012,6(12),809.
27 Lee I, Lee J L. Journal of Photonics for Energy,2015,5(1),057609.
28 Sugimoto Y, Igarashi K, Shirasaki S, et al. Japanese Journal of Applied Physics,2016,55(4S),04EJ15.
29 Campbell C T. Surface Science Reports,1997,27(1-3),1.
30 Sahu D R, Lin S Y, Huang J L. Applied Surface Science,2006,252(20),7509.
31 Schubert S, Hermenau M, Meiss J, et al. Advanced Functional Materials,2012,22(23),4993.
32 Kim D Y, Han Y C, Kim H C, et al. Advanced Functional Materials,2015,25(46),7145.
33 Schwab T, Schubert S, Hofmann S, et al. Advanced Optical Materials,2013,1(10),707.
34 Formica N, Ghosh D S, Carrilero A, et al. ACS Applied Materials & Interfaces,2013,5(8),3048.
35 Chen W Q, Thoreson M D, Ishii S, et al. Optics Express,2010,18(5),5124.
36 Tyson W R, Miller W A. Surface Science,1977,62(1),267.
37 Logeeswaran V J, Kobayashi N P, Islam M S, et al. Nano Letters,2008,9(1),178.
38 Stec H M, Williams R J, Jones T S, et al. Advanced Functional Mate-rials,2011,21(9),1709.
39 Huang J H, Lu Y H, Wu W X, et al. Journal of Applied Physics,2017,122(19),195302.
40 Zou J, Li C Z, Chang C Y, et al. Advanced Materials,2014,26(22),3618.
41 Gu D, Zhang C, Wu Y K, et al. ACS Nano,2014,8(10),10343.
42 Huang J H, Liu X H, Lu Y H, et al. Solar Energy Materials and Solar Cells,2018,184,73.
43 Koplitz L V, Dulub O, Diebold U. The Journal of Physical Chemistry B,2003,107(38),10583.
44 Raimondi F, Wambach J, Wokaun A. Physical Chemistry Chemical Physics,2003,5(18),4015.
45 Kopatzki E, Günther S, Nichtl-Pecher W, et al. Surface Science,1993,284(1-2),154.
46 Bukhtiyarov V I, Havecker M, Kaichev V V, et al. Physical Review B,2003,67(23),235422.
47 Shen M, Liu D J, Jenks C J, et al. Surface Science,2009,603(10-12),1486.
48 Russell S M, Shen M, Liu D J, et al. Surface Science,2011,605(5-6),520.
49 Wang G C, Jiang L, Pang X Y, et al. The Journal of Physical Chemistry B,2005,109(38),17943.
50 Egelhoff Jr W F, Chen P J, Powell C J, et al. Journal of Applied Physics,1997,82(12),6142.
51 Riveiro J M, Normile P S, Andres J P, et al. Applied Physics Letters,2006,89(20),201902.
52 Zhao G Q, Kim S M, Lee S G, et al. Advanced Functional Materials,2016,26(23),4180.
53 Park J H, Ambwani P, Manno M, et al. Advanced Materials,2012,24(29),3988.
54 Sergeant N P, Hadipour A, Niesen B, et al. Advanced Materials,2012,24(6),728.
55 Salinas J F, Yip H L, Chueh C C, et al. Advanced Materials,2012,24(47),6362.
56 Zhao D W, Zhang C, Kim H, et al. Advanced Energy Materials,2015,5(17),1500768.
57 Yun J, Wang W, Bae T S, et al. ACS Applied Materials & Interfaces,2013,5(20),9933.
58 Zhao G Q, Wang W, Bae T S, et al. Nature Communications,2015,6,8830.
59 Tao Y. The study of the flexible transparent electrode applied to organic optoelectronic devices. Master’s Thesis, Jilin University, China,2017(in Chinese).
陶冶.有机光电子器件的柔性透明电极的初步研究.硕士学位论文,吉林大学,2017.
60 Schwab T, Schubert S, Müller-Meskamp L, et al. Advanced Optical Materials,2013,1(12),921.
61 Im J H, Kang K T, Lee S H, et al. Organic Electronics,2016,33,116.
62 Bi Y G, Feng J, Ji J H, et al. Nanoscale,2016,8(19),10010.
63 Knoll W. Annual Review of Physical Chemistry,1998,49(1),569.
64 Gramotnev D K, Bozhevolnyi S I. Nature Photonics,2010,4(2),83.
65 Boltasseva A, Nikolajsen T, Leosson K, et al. Journal of Lightwave Technology,2005,23(1),413.
66 Zhang C, Kinsey N, Chen L, et al. Advanced Materials,2017,29(19),1605177.
67 Jiang J, Callender C L, Jacob S, et al. Applied Optics,2008,47(21),3892.
68 Hu G T. Deposition and characterization of TaAlN/Ag/TaAlN Low-E film. Master’s Thesis, Chongqing University, China,2016(in Chinese).
胡戈陶.TaAlN/Ag/TaAlN低辐射薄膜的制备及性能研究.硕士学位论文,重庆大学,2016.
69 Ju M X. Study and preparation on TiNx-SiO2-Ag-SiO2 low-emissivity composite thin films. Master’s Thesis, Chongqing University, China,2008(in Chinese).
鞠明祥.TiNx/SiO2/Ag/SiO2低辐射复合膜的研究与制备.硕士学位论文,重庆大学,2008.
70 Gao C S, Deng Y Q, Dong F Q, et al. New Chemical Materials,2010,38(12),91(in Chinese).
高春森,邓跃全,董发勤,等.化工新型材料,2010,38(12),91.
[1] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[2] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[3] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[4] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[5] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[6] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[7] 李小强, 马国俊, 殷俊, 刘文宁. 稀土元素对镁合金力学行为影响的研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 82-89.
[8] 樊江磊, 王星星, 吴深, 王霄, 高红霞, 刘建秀. Ni层对时效处理离心浇铸铜基轴瓦组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 68-72.
[9] 王妙全, 田成刚, 南洋, 徐瑶, 杨国宝, 童锦艳. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 《材料导报》期刊社, 2017, 31(19): 72-79.
[10] 李小强, 李尚鹏, 丁艳林, 马国俊, 金培鹏. 高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 77-80.
[11] 高倩, 白芳, 丁红胜, 童莉葛, 高婷, 白世武, 余江峰. 焊接熔池中元素分布规律及其影响因素的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 80-85.
[12] 王维, 叶小球, 陈长安, 李强, 金伟, 杨勇彬, 高涛. 面向等离子体材料钨中氘/氦滞留行为的研究进展*[J]. CLDB, 2017, 31(9): 112-117.
[13] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[14] 林成, 于佳石, 尹桂丽, 张爱民, 赵志伟, 黄士星, 赵永庆, 郭丽丽. 钛合金中ω相变的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 72-76.
[15] 孙有政, 刘帅, 李进宝, 刘常升. 铁含量对激光熔覆层微结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 75-78.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed